L(s) = 1 | + (−0.648 − 1.25i)2-s + (−1.86 + 0.773i)3-s + (−1.15 + 1.63i)4-s + (−1.01 − 1.99i)5-s + (2.18 + 1.84i)6-s + (−0.739 − 0.306i)7-s + (2.80 + 0.397i)8-s + (0.764 − 0.764i)9-s + (−1.84 + 2.56i)10-s + (−1.31 + 3.17i)11-s + (0.900 − 3.93i)12-s + 2.51i·13-s + (0.0949 + 1.12i)14-s + (3.43 + 2.93i)15-s + (−1.31 − 3.77i)16-s + (−0.897 − 4.02i)17-s + ⋯ |
L(s) = 1 | + (−0.458 − 0.888i)2-s + (−1.07 + 0.446i)3-s + (−0.579 + 0.815i)4-s + (−0.454 − 0.890i)5-s + (0.890 + 0.752i)6-s + (−0.279 − 0.115i)7-s + (0.990 + 0.140i)8-s + (0.254 − 0.254i)9-s + (−0.582 + 0.812i)10-s + (−0.396 + 0.957i)11-s + (0.260 − 1.13i)12-s + 0.698i·13-s + (0.0253 + 0.301i)14-s + (0.887 + 0.756i)15-s + (−0.329 − 0.944i)16-s + (−0.217 − 0.976i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.482 + 0.875i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.482 + 0.875i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.446011 - 0.263354i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.446011 - 0.263354i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.648 + 1.25i)T \) |
| 5 | \( 1 + (1.01 + 1.99i)T \) |
| 17 | \( 1 + (0.897 + 4.02i)T \) |
good | 3 | \( 1 + (1.86 - 0.773i)T + (2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (0.739 + 0.306i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (1.31 - 3.17i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 2.51iT - 13T^{2} \) |
| 19 | \( 1 + (0.658 - 0.658i)T - 19iT^{2} \) |
| 23 | \( 1 + (1.90 - 4.59i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-9.10 + 3.77i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-3.43 + 1.42i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (1.11 - 0.462i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-4.76 + 11.5i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-2.63 + 2.63i)T - 43iT^{2} \) |
| 47 | \( 1 - 10.2T + 47T^{2} \) |
| 53 | \( 1 + (3.65 + 3.65i)T + 53iT^{2} \) |
| 59 | \( 1 + (-5.24 - 5.24i)T + 59iT^{2} \) |
| 61 | \( 1 + (-8.77 - 3.63i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 5.11T + 67T^{2} \) |
| 71 | \( 1 + (-7.58 + 3.14i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-5.76 + 2.38i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (11.6 + 4.83i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (-4.85 - 4.85i)T + 83iT^{2} \) |
| 89 | \( 1 + 1.79iT - 89T^{2} \) |
| 97 | \( 1 + (5.86 - 2.43i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32136183531115253638961541487, −9.715392547642969997385895030233, −8.888159130829489868155983771625, −7.88392076182712323722573230225, −6.94781456934113206932770681321, −5.47235906824367493838509710301, −4.64631350862163368783761792007, −4.00345672588453283882858625051, −2.30667650946948260741688258332, −0.61122853516714278123419225668,
0.75425152056169607684489028044, 2.94970157836518231109070536521, 4.47035978271618873767352348818, 5.70444804754302817188095571518, 6.30692195898180166747574929515, 6.83700575302960681788474821043, 8.023915339222877704171439873551, 8.518216967286083693471955342651, 9.950139704473252454471169770634, 10.74961828650942553716023735025