L(s) = 1 | + (1.35 + 0.415i)2-s + 2.32·3-s + (1.65 + 1.12i)4-s + 5-s + (3.14 + 0.966i)6-s + 1.14i·7-s + (1.77 + 2.20i)8-s + 2.41·9-s + (1.35 + 0.415i)10-s − 5.72·11-s + (3.85 + 2.61i)12-s − 5.27i·13-s + (−0.474 + 1.54i)14-s + 2.32·15-s + (1.47 + 3.71i)16-s + (0.303 − 4.11i)17-s + ⋯ |
L(s) = 1 | + (0.955 + 0.293i)2-s + 1.34·3-s + (0.827 + 0.561i)4-s + 0.447·5-s + (1.28 + 0.394i)6-s + 0.431i·7-s + (0.626 + 0.779i)8-s + 0.805·9-s + (0.427 + 0.131i)10-s − 1.72·11-s + (1.11 + 0.754i)12-s − 1.46i·13-s + (−0.126 + 0.412i)14-s + 0.600·15-s + (0.369 + 0.929i)16-s + (0.0736 − 0.997i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.823 - 0.567i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.823 - 0.567i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.81806 + 1.18706i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.81806 + 1.18706i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.35 - 0.415i)T \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 + (-0.303 + 4.11i)T \) |
good | 3 | \( 1 - 2.32T + 3T^{2} \) |
| 7 | \( 1 - 1.14iT - 7T^{2} \) |
| 11 | \( 1 + 5.72T + 11T^{2} \) |
| 13 | \( 1 + 5.27iT - 13T^{2} \) |
| 19 | \( 1 - 7.03iT - 19T^{2} \) |
| 23 | \( 1 + 2.69iT - 23T^{2} \) |
| 29 | \( 1 + 6.20T + 29T^{2} \) |
| 31 | \( 1 + 5.46iT - 31T^{2} \) |
| 37 | \( 1 + 0.842T + 37T^{2} \) |
| 41 | \( 1 - 6.06iT - 41T^{2} \) |
| 43 | \( 1 + 2.67iT - 43T^{2} \) |
| 47 | \( 1 - 6.55T + 47T^{2} \) |
| 53 | \( 1 + 11.7iT - 53T^{2} \) |
| 59 | \( 1 + 0.687iT - 59T^{2} \) |
| 61 | \( 1 - 11.0T + 61T^{2} \) |
| 67 | \( 1 - 12.3iT - 67T^{2} \) |
| 71 | \( 1 - 6.57iT - 71T^{2} \) |
| 73 | \( 1 - 10.7iT - 73T^{2} \) |
| 79 | \( 1 - 0.186iT - 79T^{2} \) |
| 83 | \( 1 + 3.67iT - 83T^{2} \) |
| 89 | \( 1 + 6.77T + 89T^{2} \) |
| 97 | \( 1 + 4.14iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42463664739029231478859940230, −9.798936614799755928027843235233, −8.437686243719419848237901077848, −7.987400057929130610311812096905, −7.26888795580401810078346802437, −5.67504774304618960983261218054, −5.37149587033279109782379225635, −3.83236411356177553481972310983, −2.80894666803030914375511514642, −2.30498333815325176899921159090,
1.88869498117889042397226990411, 2.66200964129014404541510600246, 3.69863788430279743646882006689, 4.70127424338633521981840464565, 5.72780464433789631879914264594, 6.99667942614763520703194530135, 7.60982303193735212136648334324, 8.803425184517420642297504793462, 9.527008691314608104091147782424, 10.55743105014506657649272695588