L(s) = 1 | + (1.38 − 0.299i)2-s + 2.30·3-s + (1.82 − 0.826i)4-s − 5-s + (3.19 − 0.690i)6-s + 2.59i·7-s + (2.27 − 1.68i)8-s + 2.33·9-s + (−1.38 + 0.299i)10-s + 0.888·11-s + (4.20 − 1.90i)12-s − 1.64i·13-s + (0.774 + 3.58i)14-s − 2.30·15-s + (2.63 − 3.01i)16-s + (−2.66 − 3.14i)17-s + ⋯ |
L(s) = 1 | + (0.977 − 0.211i)2-s + 1.33·3-s + (0.910 − 0.413i)4-s − 0.447·5-s + (1.30 − 0.281i)6-s + 0.979i·7-s + (0.802 − 0.596i)8-s + 0.778·9-s + (−0.437 + 0.0945i)10-s + 0.267·11-s + (1.21 − 0.551i)12-s − 0.454i·13-s + (0.207 + 0.957i)14-s − 0.596·15-s + (0.658 − 0.752i)16-s + (−0.646 − 0.763i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.227i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 + 0.227i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.80917 - 0.438194i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.80917 - 0.438194i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 + 0.299i)T \) |
| 5 | \( 1 + T \) |
| 17 | \( 1 + (2.66 + 3.14i)T \) |
good | 3 | \( 1 - 2.30T + 3T^{2} \) |
| 7 | \( 1 - 2.59iT - 7T^{2} \) |
| 11 | \( 1 - 0.888T + 11T^{2} \) |
| 13 | \( 1 + 1.64iT - 13T^{2} \) |
| 19 | \( 1 + 2.15iT - 19T^{2} \) |
| 23 | \( 1 - 8.19iT - 23T^{2} \) |
| 29 | \( 1 + 1.57T + 29T^{2} \) |
| 31 | \( 1 - 3.93iT - 31T^{2} \) |
| 37 | \( 1 + 1.45T + 37T^{2} \) |
| 41 | \( 1 + 1.15iT - 41T^{2} \) |
| 43 | \( 1 + 8.22iT - 43T^{2} \) |
| 47 | \( 1 + 9.65T + 47T^{2} \) |
| 53 | \( 1 + 4.95iT - 53T^{2} \) |
| 59 | \( 1 - 14.4iT - 59T^{2} \) |
| 61 | \( 1 + 11.2T + 61T^{2} \) |
| 67 | \( 1 - 7.11iT - 67T^{2} \) |
| 71 | \( 1 + 4.08iT - 71T^{2} \) |
| 73 | \( 1 + 7.46iT - 73T^{2} \) |
| 79 | \( 1 + 13.7iT - 79T^{2} \) |
| 83 | \( 1 + 1.74iT - 83T^{2} \) |
| 89 | \( 1 - 7.73T + 89T^{2} \) |
| 97 | \( 1 - 4.92iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55968712085913162288348376734, −9.384362311305564769535205438208, −8.842064495386940636002285732959, −7.75598966966495825594931887368, −7.03517006268802272807046573623, −5.77108878387462797020551397874, −4.83284632978293419763875958356, −3.59500314651155465578679703135, −2.93659832687046913906969714627, −1.91089190204498932971000235310,
1.88545420217640448863463294237, 3.09248702164999011807558651588, 4.00503846726478315978461972090, 4.54561714472550146015193825145, 6.22412065052691728276221448660, 6.99602543092572037719439812138, 7.956347384488501343133042546231, 8.420428756674566759047564376249, 9.608451422711528864848245180550, 10.68050944608011104146608958959