Properties

Label 2-675-27.4-c1-0-51
Degree 22
Conductor 675675
Sign 0.835+0.549i-0.835 + 0.549i
Analytic cond. 5.389905.38990
Root an. cond. 2.321612.32161
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.826 + 0.300i)2-s + (−0.592 − 1.62i)3-s + (−0.939 − 0.788i)4-s − 1.52i·6-s + (2.87 − 2.41i)7-s + (−1.41 − 2.45i)8-s + (−2.29 + 1.92i)9-s + (−0.180 − 1.02i)11-s + (−0.726 + 1.99i)12-s + (−2.99 + 1.08i)13-s + (3.10 − 1.13i)14-s + (−0.00727 − 0.0412i)16-s + (0.233 − 0.405i)17-s + (−2.47 + 0.902i)18-s + (−2.34 − 4.06i)19-s + ⋯
L(s)  = 1  + (0.584 + 0.212i)2-s + (−0.342 − 0.939i)3-s + (−0.469 − 0.394i)4-s − 0.621i·6-s + (1.08 − 0.913i)7-s + (−0.501 − 0.868i)8-s + (−0.766 + 0.642i)9-s + (−0.0545 − 0.309i)11-s + (−0.209 + 0.576i)12-s + (−0.830 + 0.302i)13-s + (0.830 − 0.302i)14-s + (−0.00181 − 0.0103i)16-s + (0.0567 − 0.0982i)17-s + (−0.584 + 0.212i)18-s + (−0.538 − 0.932i)19-s + ⋯

Functional equation

Λ(s)=(675s/2ΓC(s)L(s)=((0.835+0.549i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.835 + 0.549i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(675s/2ΓC(s+1/2)L(s)=((0.835+0.549i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.835 + 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 675675    =    33523^{3} \cdot 5^{2}
Sign: 0.835+0.549i-0.835 + 0.549i
Analytic conductor: 5.389905.38990
Root analytic conductor: 2.321612.32161
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ675(301,)\chi_{675} (301, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 675, ( :1/2), 0.835+0.549i)(2,\ 675,\ (\ :1/2),\ -0.835 + 0.549i)

Particular Values

L(1)L(1) \approx 0.3545641.18432i0.354564 - 1.18432i
L(12)L(\frac12) \approx 0.3545641.18432i0.354564 - 1.18432i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(0.592+1.62i)T 1 + (0.592 + 1.62i)T
5 1 1
good2 1+(0.8260.300i)T+(1.53+1.28i)T2 1 + (-0.826 - 0.300i)T + (1.53 + 1.28i)T^{2}
7 1+(2.87+2.41i)T+(1.216.89i)T2 1 + (-2.87 + 2.41i)T + (1.21 - 6.89i)T^{2}
11 1+(0.180+1.02i)T+(10.3+3.76i)T2 1 + (0.180 + 1.02i)T + (-10.3 + 3.76i)T^{2}
13 1+(2.991.08i)T+(9.958.35i)T2 1 + (2.99 - 1.08i)T + (9.95 - 8.35i)T^{2}
17 1+(0.233+0.405i)T+(8.514.7i)T2 1 + (-0.233 + 0.405i)T + (-8.5 - 14.7i)T^{2}
19 1+(2.34+4.06i)T+(9.5+16.4i)T2 1 + (2.34 + 4.06i)T + (-9.5 + 16.4i)T^{2}
23 1+(4.113.45i)T+(3.99+22.6i)T2 1 + (-4.11 - 3.45i)T + (3.99 + 22.6i)T^{2}
29 1+(5.45+1.98i)T+(22.2+18.6i)T2 1 + (5.45 + 1.98i)T + (22.2 + 18.6i)T^{2}
31 1+(3.14+2.63i)T+(5.38+30.5i)T2 1 + (3.14 + 2.63i)T + (5.38 + 30.5i)T^{2}
37 1+(2.233.87i)T+(18.532.0i)T2 1 + (2.23 - 3.87i)T + (-18.5 - 32.0i)T^{2}
41 1+(7.522.73i)T+(31.426.3i)T2 1 + (7.52 - 2.73i)T + (31.4 - 26.3i)T^{2}
43 1+(2.11+11.9i)T+(40.4+14.7i)T2 1 + (2.11 + 11.9i)T + (-40.4 + 14.7i)T^{2}
47 1+(2.65+2.22i)T+(8.1646.2i)T2 1 + (-2.65 + 2.22i)T + (8.16 - 46.2i)T^{2}
53 18.83T+53T2 1 - 8.83T + 53T^{2}
59 1+(2.36+13.4i)T+(55.420.1i)T2 1 + (-2.36 + 13.4i)T + (-55.4 - 20.1i)T^{2}
61 1+(7.46+6.26i)T+(10.560.0i)T2 1 + (-7.46 + 6.26i)T + (10.5 - 60.0i)T^{2}
67 1+(1.71+0.623i)T+(51.343.0i)T2 1 + (-1.71 + 0.623i)T + (51.3 - 43.0i)T^{2}
71 1+(3.856.67i)T+(35.561.4i)T2 1 + (3.85 - 6.67i)T + (-35.5 - 61.4i)T^{2}
73 1+(0.407+0.705i)T+(36.5+63.2i)T2 1 + (0.407 + 0.705i)T + (-36.5 + 63.2i)T^{2}
79 1+(3.811.38i)T+(60.5+50.7i)T2 1 + (-3.81 - 1.38i)T + (60.5 + 50.7i)T^{2}
83 1+(15.95.81i)T+(63.5+53.3i)T2 1 + (-15.9 - 5.81i)T + (63.5 + 53.3i)T^{2}
89 1+(5.199.00i)T+(44.5+77.0i)T2 1 + (-5.19 - 9.00i)T + (-44.5 + 77.0i)T^{2}
97 1+(1.06+6.02i)T+(91.1+33.1i)T2 1 + (1.06 + 6.02i)T + (-91.1 + 33.1i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.32571033903231957575504533795, −9.195713013298573971035362457778, −8.242100894859051867132825561355, −7.24235400752396300816685292314, −6.70542809336239920781890869585, −5.35485562563716158603113467226, −4.94934747095947924249752960568, −3.72529039646307801446107936313, −1.96743743901241239253370325181, −0.56867753597151268684574138849, 2.29294713796537206193624710606, 3.48430748220785210620397971537, 4.57355598820358008491044977073, 5.14516272183433376460249677986, 5.86965056779127845581559445539, 7.48025598289946419734313836695, 8.569564080621873707819527705566, 8.973754742740896181968551826176, 10.10013517463067973470823730292, 10.95043336631176467671598640072

Graph of the ZZ-function along the critical line