L(s) = 1 | + (−1.84 + 1.55i)2-s + (1.53 + 0.794i)3-s + (0.665 − 3.77i)4-s + (−4.07 + 0.920i)6-s + (0.0583 + 0.330i)7-s + (2.20 + 3.82i)8-s + (1.73 + 2.44i)9-s + (−4.97 − 1.81i)11-s + (4.01 − 5.27i)12-s + (4.68 + 3.93i)13-s + (−0.621 − 0.521i)14-s + (−2.82 − 1.02i)16-s + (−1.52 + 2.63i)17-s + (−7.01 − 1.82i)18-s + (−0.260 − 0.450i)19-s + ⋯ |
L(s) = 1 | + (−1.30 + 1.09i)2-s + (0.888 + 0.458i)3-s + (0.332 − 1.88i)4-s + (−1.66 + 0.375i)6-s + (0.0220 + 0.125i)7-s + (0.780 + 1.35i)8-s + (0.579 + 0.814i)9-s + (−1.49 − 0.545i)11-s + (1.16 − 1.52i)12-s + (1.29 + 1.09i)13-s + (−0.166 − 0.139i)14-s + (−0.706 − 0.257i)16-s + (−0.368 + 0.638i)17-s + (−1.65 − 0.429i)18-s + (−0.0597 − 0.103i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.948 - 0.317i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.948 - 0.317i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.139164 + 0.853176i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.139164 + 0.853176i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.53 - 0.794i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (1.84 - 1.55i)T + (0.347 - 1.96i)T^{2} \) |
| 7 | \( 1 + (-0.0583 - 0.330i)T + (-6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (4.97 + 1.81i)T + (8.42 + 7.07i)T^{2} \) |
| 13 | \( 1 + (-4.68 - 3.93i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (1.52 - 2.63i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.260 + 0.450i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.0350 - 0.198i)T + (-21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (-1.41 + 1.18i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (1.58 - 8.98i)T + (-29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (3.11 - 5.39i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.96 - 5.84i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (6.38 + 2.32i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-2.11 - 12.0i)T + (-44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 - 2.74T + 53T^{2} \) |
| 59 | \( 1 + (6.56 - 2.38i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (2.16 + 12.2i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (4.29 + 3.60i)T + (11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (-1.58 + 2.74i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.731 - 1.26i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.18 - 1.83i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (0.578 - 0.485i)T + (14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (3.18 + 5.50i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (10.0 + 3.64i)T + (74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60933793944456939726355407132, −9.730141531995622623447402246353, −8.797164786093510767483140788615, −8.468905928219956551087251835405, −7.71635328858852406557908514966, −6.71713022162278874730062000481, −5.80629448787207396992071523114, −4.62722712410182522861614692333, −3.18117375301675183842217422090, −1.63609363472378331415879940455,
0.64409053044849407600159958944, 2.10149981282098793820612324571, 2.87422777887060052949276200218, 3.92325308700155062333517369886, 5.65241364020071873950786387431, 7.24030105396188949296801310490, 7.79927324365801666524053348024, 8.532514777441682370589947825041, 9.202720271134829870285345652158, 10.21984526915896140886591445704