L(s) = 1 | + (0.318 − 0.267i)2-s + (−0.159 + 1.72i)3-s + (−0.317 + 1.79i)4-s + (0.409 + 0.591i)6-s + (0.229 + 1.29i)7-s + (0.795 + 1.37i)8-s + (−2.94 − 0.551i)9-s + (4.90 + 1.78i)11-s + (−3.05 − 0.834i)12-s + (0.0138 + 0.0116i)13-s + (0.419 + 0.352i)14-s + (−2.81 − 1.02i)16-s + (−1.56 + 2.71i)17-s + (−1.08 + 0.612i)18-s + (−0.208 − 0.361i)19-s + ⋯ |
L(s) = 1 | + (0.225 − 0.188i)2-s + (−0.0922 + 0.995i)3-s + (−0.158 + 0.899i)4-s + (0.167 + 0.241i)6-s + (0.0866 + 0.491i)7-s + (0.281 + 0.486i)8-s + (−0.982 − 0.183i)9-s + (1.47 + 0.537i)11-s + (−0.881 − 0.241i)12-s + (0.00383 + 0.00321i)13-s + (0.112 + 0.0941i)14-s + (−0.703 − 0.256i)16-s + (−0.379 + 0.658i)17-s + (−0.255 + 0.144i)18-s + (−0.0478 − 0.0829i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(−0.736−0.676i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(−0.736−0.676i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
−0.736−0.676i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(76,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), −0.736−0.676i)
|
Particular Values
L(1) |
≈ |
0.526185+1.35136i |
L(21) |
≈ |
0.526185+1.35136i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.159−1.72i)T |
| 5 | 1 |
good | 2 | 1+(−0.318+0.267i)T+(0.347−1.96i)T2 |
| 7 | 1+(−0.229−1.29i)T+(−6.57+2.39i)T2 |
| 11 | 1+(−4.90−1.78i)T+(8.42+7.07i)T2 |
| 13 | 1+(−0.0138−0.0116i)T+(2.25+12.8i)T2 |
| 17 | 1+(1.56−2.71i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.208+0.361i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.179+1.01i)T+(−21.6−7.86i)T2 |
| 29 | 1+(5.98−5.01i)T+(5.03−28.5i)T2 |
| 31 | 1+(−0.647+3.67i)T+(−29.1−10.6i)T2 |
| 37 | 1+(−2.21+3.83i)T+(−18.5−32.0i)T2 |
| 41 | 1+(2.81+2.36i)T+(7.11+40.3i)T2 |
| 43 | 1+(7.80+2.84i)T+(32.9+27.6i)T2 |
| 47 | 1+(−1.23−6.99i)T+(−44.1+16.0i)T2 |
| 53 | 1−1.30T+53T2 |
| 59 | 1+(−3.47+1.26i)T+(45.1−37.9i)T2 |
| 61 | 1+(−1.20−6.80i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−8.44−7.08i)T+(11.6+65.9i)T2 |
| 71 | 1+(−3.04+5.26i)T+(−35.5−61.4i)T2 |
| 73 | 1+(0.273+0.473i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−0.374+0.314i)T+(13.7−77.7i)T2 |
| 83 | 1+(3.53−2.96i)T+(14.4−81.7i)T2 |
| 89 | 1+(−1.68−2.92i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−9.34−3.40i)T+(74.3+62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.00717936246322104753323230946, −9.887036133675585424427245528359, −8.982490069268780253032083174718, −8.622524780432419390697792374749, −7.35711852094336720378873776941, −6.27957913307692559685186829930, −5.13777903888452829177494697286, −4.14460962669847745671606901376, −3.57491424097319745816096588908, −2.19588921289253512907295279318,
0.75220362470651140699437670473, 1.86222458672926423336553022083, 3.57758720805954885249524263219, 4.79734081651286234769074467305, 5.87205684951414267636878342994, 6.58948285514967127893009252797, 7.22872065819903089238414300040, 8.431020474945202536338984132347, 9.260443139134693426371122439164, 10.14751668783970845519628576095