L(s) = 1 | + (0.672 + 0.564i)2-s + (1.45 + 0.939i)3-s + (−0.213 − 1.21i)4-s + (0.448 + 1.45i)6-s + (−0.0883 + 0.501i)7-s + (1.41 − 2.45i)8-s + (1.23 + 2.73i)9-s + (2.28 − 0.830i)11-s + (0.826 − 1.96i)12-s + (4.85 − 4.07i)13-s + (−0.342 + 0.287i)14-s + (0.0284 − 0.0103i)16-s + (−2.86 − 4.96i)17-s + (−0.711 + 2.53i)18-s + (−1.94 + 3.36i)19-s + ⋯ |
L(s) = 1 | + (0.475 + 0.399i)2-s + (0.840 + 0.542i)3-s + (−0.106 − 0.605i)4-s + (0.183 + 0.593i)6-s + (−0.0334 + 0.189i)7-s + (0.501 − 0.868i)8-s + (0.411 + 0.911i)9-s + (0.687 − 0.250i)11-s + (0.238 − 0.566i)12-s + (1.34 − 1.13i)13-s + (−0.0914 + 0.0767i)14-s + (0.00710 − 0.00258i)16-s + (−0.695 − 1.20i)17-s + (−0.167 + 0.597i)18-s + (−0.446 + 0.772i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(0.950−0.311i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(0.950−0.311i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.950−0.311i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), 0.950−0.311i)
|
Particular Values
L(1) |
≈ |
2.59970+0.415257i |
L(21) |
≈ |
2.59970+0.415257i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.45−0.939i)T |
| 5 | 1 |
good | 2 | 1+(−0.672−0.564i)T+(0.347+1.96i)T2 |
| 7 | 1+(0.0883−0.501i)T+(−6.57−2.39i)T2 |
| 11 | 1+(−2.28+0.830i)T+(8.42−7.07i)T2 |
| 13 | 1+(−4.85+4.07i)T+(2.25−12.8i)T2 |
| 17 | 1+(2.86+4.96i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.94−3.36i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.12−6.37i)T+(−21.6+7.86i)T2 |
| 29 | 1+(0.324+0.272i)T+(5.03+28.5i)T2 |
| 31 | 1+(−1.47−8.37i)T+(−29.1+10.6i)T2 |
| 37 | 1+(1.19+2.06i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−0.938+0.787i)T+(7.11−40.3i)T2 |
| 43 | 1+(−2.34+0.855i)T+(32.9−27.6i)T2 |
| 47 | 1+(−0.143+0.816i)T+(−44.1−16.0i)T2 |
| 53 | 1+8.88T+53T2 |
| 59 | 1+(6.57+2.39i)T+(45.1+37.9i)T2 |
| 61 | 1+(−0.558+3.16i)T+(−57.3−20.8i)T2 |
| 67 | 1+(5.32−4.47i)T+(11.6−65.9i)T2 |
| 71 | 1+(1.59+2.77i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−5.99+10.3i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.06−1.73i)T+(13.7+77.7i)T2 |
| 83 | 1+(6.00+5.03i)T+(14.4+81.7i)T2 |
| 89 | 1+(9.24−16.0i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−7.86+2.86i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.56324322758958343187532078861, −9.507740200810321280725437374668, −8.958598891010619217956410346956, −7.991401316640782146592650423981, −6.93133253258095848147000550859, −5.90262145227319762701542033747, −5.09218112897177596797755864837, −4.00722134489322773187217705834, −3.15302100476192062332406563698, −1.43799387542788385762720925307,
1.64972470303690108350324233630, 2.69185509699818731158871774825, 4.07831915235876894041122790245, 4.21872732713367834410619839427, 6.27373570742840591765782507147, 6.84790541669992122035163290758, 8.027971524638299229215977056485, 8.703198948520899212947848636024, 9.259839744208550793782136437631, 10.71010424055825723634660538958