L(s) = 1 | + (0.194 + 0.163i)2-s + (−1.72 − 0.154i)3-s + (−0.336 − 1.90i)4-s + (−0.310 − 0.312i)6-s + (−0.449 + 2.55i)7-s + (0.500 − 0.866i)8-s + (2.95 + 0.534i)9-s + (2.07 − 0.753i)11-s + (0.284 + 3.34i)12-s + (1.11 − 0.932i)13-s + (−0.504 + 0.423i)14-s + (−3.39 + 1.23i)16-s + (1.17 + 2.04i)17-s + (0.487 + 0.586i)18-s + (2.22 − 3.84i)19-s + ⋯ |
L(s) = 1 | + (0.137 + 0.115i)2-s + (−0.995 − 0.0894i)3-s + (−0.168 − 0.952i)4-s + (−0.126 − 0.127i)6-s + (−0.170 + 0.964i)7-s + (0.176 − 0.306i)8-s + (0.983 + 0.178i)9-s + (0.624 − 0.227i)11-s + (0.0821 + 0.964i)12-s + (0.308 − 0.258i)13-s + (−0.134 + 0.113i)14-s + (−0.849 + 0.309i)16-s + (0.285 + 0.494i)17-s + (0.114 + 0.138i)18-s + (0.509 − 0.882i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(0.195+0.980i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(0.195+0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.195+0.980i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), 0.195+0.980i)
|
Particular Values
L(1) |
≈ |
0.784053−0.643238i |
L(21) |
≈ |
0.784053−0.643238i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.72+0.154i)T |
| 5 | 1 |
good | 2 | 1+(−0.194−0.163i)T+(0.347+1.96i)T2 |
| 7 | 1+(0.449−2.55i)T+(−6.57−2.39i)T2 |
| 11 | 1+(−2.07+0.753i)T+(8.42−7.07i)T2 |
| 13 | 1+(−1.11+0.932i)T+(2.25−12.8i)T2 |
| 17 | 1+(−1.17−2.04i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.22+3.84i)T+(−9.5−16.4i)T2 |
| 23 | 1+(1.22+6.94i)T+(−21.6+7.86i)T2 |
| 29 | 1+(4.88+4.10i)T+(5.03+28.5i)T2 |
| 31 | 1+(1.13+6.45i)T+(−29.1+10.6i)T2 |
| 37 | 1+(−2.27−3.93i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−5.08+4.26i)T+(7.11−40.3i)T2 |
| 43 | 1+(−5.79+2.10i)T+(32.9−27.6i)T2 |
| 47 | 1+(−1.65+9.40i)T+(−44.1−16.0i)T2 |
| 53 | 1+13.3T+53T2 |
| 59 | 1+(−3.10−1.12i)T+(45.1+37.9i)T2 |
| 61 | 1+(1.57−8.95i)T+(−57.3−20.8i)T2 |
| 67 | 1+(−4.09+3.43i)T+(11.6−65.9i)T2 |
| 71 | 1+(1.67+2.89i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−2.55+4.41i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−3.14−2.63i)T+(13.7+77.7i)T2 |
| 83 | 1+(2.65+2.22i)T+(14.4+81.7i)T2 |
| 89 | 1+(−7.60+13.1i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−3.94+1.43i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.39744918934205483813671800079, −9.530503556900063064645984536869, −8.814803871909850568426197865957, −7.47015764051502212671678865698, −6.24976474902157164988713953335, −5.99329903209469635659191615209, −5.04329720934670292787636013668, −4.03921045513942661902981737085, −2.17601497153984475711328464633, −0.66083246601424595510569048517,
1.37589929884699535774890583150, 3.44785414113164787540657396006, 4.08812186833448427814192756151, 5.12769052418870091021031391398, 6.26304322549355239681786026948, 7.30846829571090804571771653273, 7.69355779810173534322414381543, 9.208494277818809926620682769788, 9.803406616298174847908309718800, 11.02104816795485390705964086112