Properties

Label 2-675-27.16-c1-0-15
Degree 22
Conductor 675675
Sign 0.8350.549i-0.835 - 0.549i
Analytic cond. 5.389905.38990
Root an. cond. 2.321612.32161
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.93 + 1.62i)2-s + (−1.11 − 1.32i)3-s + (0.766 + 4.34i)4-s − 4.38i·6-s + (−0.532 + 3.01i)7-s + (−3.05 + 5.28i)8-s + (−0.520 + 2.95i)9-s + (−5.29 + 1.92i)11-s + (4.91 − 5.85i)12-s + (3.23 − 2.71i)13-s + (−5.94 + 4.98i)14-s + (−6.23 + 2.27i)16-s + (0.826 + 1.43i)17-s + (−5.81 + 4.88i)18-s + (−0.120 + 0.208i)19-s + ⋯
L(s)  = 1  + (1.37 + 1.15i)2-s + (−0.642 − 0.766i)3-s + (0.383 + 2.17i)4-s − 1.79i·6-s + (−0.201 + 1.14i)7-s + (−1.07 + 1.86i)8-s + (−0.173 + 0.984i)9-s + (−1.59 + 0.581i)11-s + (1.41 − 1.68i)12-s + (0.898 − 0.753i)13-s + (−1.58 + 1.33i)14-s + (−1.55 + 0.567i)16-s + (0.200 + 0.347i)17-s + (−1.37 + 1.15i)18-s + (−0.0276 + 0.0479i)19-s + ⋯

Functional equation

Λ(s)=(675s/2ΓC(s)L(s)=((0.8350.549i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.835 - 0.549i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(675s/2ΓC(s+1/2)L(s)=((0.8350.549i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 675675    =    33523^{3} \cdot 5^{2}
Sign: 0.8350.549i-0.835 - 0.549i
Analytic conductor: 5.389905.38990
Root analytic conductor: 2.321612.32161
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ675(151,)\chi_{675} (151, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 675, ( :1/2), 0.8350.549i)(2,\ 675,\ (\ :1/2),\ -0.835 - 0.549i)

Particular Values

L(1)L(1) \approx 0.597980+1.99739i0.597980 + 1.99739i
L(12)L(\frac12) \approx 0.597980+1.99739i0.597980 + 1.99739i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.11+1.32i)T 1 + (1.11 + 1.32i)T
5 1 1
good2 1+(1.931.62i)T+(0.347+1.96i)T2 1 + (-1.93 - 1.62i)T + (0.347 + 1.96i)T^{2}
7 1+(0.5323.01i)T+(6.572.39i)T2 1 + (0.532 - 3.01i)T + (-6.57 - 2.39i)T^{2}
11 1+(5.291.92i)T+(8.427.07i)T2 1 + (5.29 - 1.92i)T + (8.42 - 7.07i)T^{2}
13 1+(3.23+2.71i)T+(2.2512.8i)T2 1 + (-3.23 + 2.71i)T + (2.25 - 12.8i)T^{2}
17 1+(0.8261.43i)T+(8.5+14.7i)T2 1 + (-0.826 - 1.43i)T + (-8.5 + 14.7i)T^{2}
19 1+(0.1200.208i)T+(9.516.4i)T2 1 + (0.120 - 0.208i)T + (-9.5 - 16.4i)T^{2}
23 1+(1.297.34i)T+(21.6+7.86i)T2 1 + (-1.29 - 7.34i)T + (-21.6 + 7.86i)T^{2}
29 1+(5.90+4.95i)T+(5.03+28.5i)T2 1 + (5.90 + 4.95i)T + (5.03 + 28.5i)T^{2}
31 1+(0.8584.86i)T+(29.1+10.6i)T2 1 + (-0.858 - 4.86i)T + (-29.1 + 10.6i)T^{2}
37 1+(1.242.15i)T+(18.5+32.0i)T2 1 + (-1.24 - 2.15i)T + (-18.5 + 32.0i)T^{2}
41 1+(0.1090.0918i)T+(7.1140.3i)T2 1 + (0.109 - 0.0918i)T + (7.11 - 40.3i)T^{2}
43 1+(0.705+0.256i)T+(32.927.6i)T2 1 + (-0.705 + 0.256i)T + (32.9 - 27.6i)T^{2}
47 1+(0.807+4.58i)T+(44.116.0i)T2 1 + (-0.807 + 4.58i)T + (-44.1 - 16.0i)T^{2}
53 112.1T+53T2 1 - 12.1T + 53T^{2}
59 1+(4.451.62i)T+(45.1+37.9i)T2 1 + (-4.45 - 1.62i)T + (45.1 + 37.9i)T^{2}
61 1+(2.41+13.6i)T+(57.320.8i)T2 1 + (-2.41 + 13.6i)T + (-57.3 - 20.8i)T^{2}
67 1+(5.64+4.73i)T+(11.665.9i)T2 1 + (-5.64 + 4.73i)T + (11.6 - 65.9i)T^{2}
71 1+(2.454.24i)T+(35.5+61.4i)T2 1 + (-2.45 - 4.24i)T + (-35.5 + 61.4i)T^{2}
73 1+(0.113+0.196i)T+(36.563.2i)T2 1 + (-0.113 + 0.196i)T + (-36.5 - 63.2i)T^{2}
79 1+(7.53+6.32i)T+(13.7+77.7i)T2 1 + (7.53 + 6.32i)T + (13.7 + 77.7i)T^{2}
83 1+(6.78+5.69i)T+(14.4+81.7i)T2 1 + (6.78 + 5.69i)T + (14.4 + 81.7i)T^{2}
89 1+(3.335.76i)T+(44.577.0i)T2 1 + (3.33 - 5.76i)T + (-44.5 - 77.0i)T^{2}
97 1+(8.95+3.26i)T+(74.362.3i)T2 1 + (-8.95 + 3.26i)T + (74.3 - 62.3i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.27807089733539838922890670983, −10.13199253597808307650265583725, −8.554105394763295256181889888185, −7.83619642395598822256986537163, −7.18638468179263059777562326953, −6.04473596252506159897046195666, −5.56367814293490797001744533372, −5.02041862030733594152870550675, −3.45829288065826710324307098404, −2.30829941676216497058240199911, 0.76317113316738554600419595630, 2.65024887684641983447561909864, 3.73206515307309049690443858974, 4.35337154258135707798419040943, 5.30966986742205641358240483983, 6.04473633705306742284023103118, 7.14232389227362843987232459369, 8.715858328789783011095538775293, 9.951924989627238695457421963068, 10.52666416635542442170747550575

Graph of the ZZ-function along the critical line