L(s) = 1 | + (0.233 + 1.32i)2-s + (1.70 + 0.300i)3-s + (0.173 − 0.0632i)4-s + 2.33i·6-s + (0.652 + 0.237i)7-s + (1.47 + 2.54i)8-s + (2.81 + 1.02i)9-s + (−3.52 + 2.95i)11-s + (0.315 − 0.0555i)12-s + (−0.245 + 1.39i)13-s + (−0.162 + 0.921i)14-s + (−2.75 + 2.31i)16-s + (1.93 − 3.35i)17-s + (−0.701 + 3.98i)18-s + (−3.53 − 6.11i)19-s + ⋯ |
L(s) = 1 | + (0.165 + 0.938i)2-s + (0.984 + 0.173i)3-s + (0.0868 − 0.0316i)4-s + 0.952i·6-s + (0.246 + 0.0897i)7-s + (0.520 + 0.901i)8-s + (0.939 + 0.342i)9-s + (−1.06 + 0.890i)11-s + (0.0909 − 0.0160i)12-s + (−0.0679 + 0.385i)13-s + (−0.0434 + 0.246i)14-s + (−0.688 + 0.577i)16-s + (0.470 − 0.814i)17-s + (−0.165 + 0.938i)18-s + (−0.810 − 1.40i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0581 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0581 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.76391 + 1.86964i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.76391 + 1.86964i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.70 - 0.300i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.233 - 1.32i)T + (-1.87 + 0.684i)T^{2} \) |
| 7 | \( 1 + (-0.652 - 0.237i)T + (5.36 + 4.49i)T^{2} \) |
| 11 | \( 1 + (3.52 - 2.95i)T + (1.91 - 10.8i)T^{2} \) |
| 13 | \( 1 + (0.245 - 1.39i)T + (-12.2 - 4.44i)T^{2} \) |
| 17 | \( 1 + (-1.93 + 3.35i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.53 + 6.11i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.59 + 1.30i)T + (17.6 - 14.7i)T^{2} \) |
| 29 | \( 1 + (-0.851 - 4.82i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (-0.786 + 0.286i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (-3.99 + 6.91i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.36 - 7.74i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (1.59 - 1.33i)T + (7.46 - 42.3i)T^{2} \) |
| 47 | \( 1 + (6.46 + 2.35i)T + (36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 - 3.05T + 53T^{2} \) |
| 59 | \( 1 + (6.82 + 5.72i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (-8.12 - 2.95i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (-1.64 + 9.30i)T + (-62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (-2.90 + 5.02i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (2.70 + 4.68i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.27 + 12.9i)T + (-74.2 + 27.0i)T^{2} \) |
| 83 | \( 1 + (0.197 + 1.11i)T + (-77.9 + 28.3i)T^{2} \) |
| 89 | \( 1 + (0.368 + 0.637i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.39 - 5.36i)T + (16.8 - 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63248009754263053023952847854, −9.678075685951945999896880585349, −8.798111116354010284389326469298, −7.937671794826592956222124819089, −7.25750403905601093116492320312, −6.58843120619302984898023133019, −5.01371616124218810612299370834, −4.70309415865211164949791064397, −2.92924545213226361576612813480, −2.01852628781566488668008560491,
1.34166349132634338594485166629, 2.52839805020763235455903558379, 3.35693026671192425824738746930, 4.24213228907600621135750554879, 5.71694183588434359539889084104, 6.88589316824613836655539426127, 8.098219047709833425723677865879, 8.221675208966312163814709902007, 9.722979154780473527885539840475, 10.33278592553543956286967106697