L(s) = 1 | + (0.233 + 1.32i)2-s + (1.70 + 0.300i)3-s + (0.173 − 0.0632i)4-s + 2.33i·6-s + (0.652 + 0.237i)7-s + (1.47 + 2.54i)8-s + (2.81 + 1.02i)9-s + (−3.52 + 2.95i)11-s + (0.315 − 0.0555i)12-s + (−0.245 + 1.39i)13-s + (−0.162 + 0.921i)14-s + (−2.75 + 2.31i)16-s + (1.93 − 3.35i)17-s + (−0.701 + 3.98i)18-s + (−3.53 − 6.11i)19-s + ⋯ |
L(s) = 1 | + (0.165 + 0.938i)2-s + (0.984 + 0.173i)3-s + (0.0868 − 0.0316i)4-s + 0.952i·6-s + (0.246 + 0.0897i)7-s + (0.520 + 0.901i)8-s + (0.939 + 0.342i)9-s + (−1.06 + 0.890i)11-s + (0.0909 − 0.0160i)12-s + (−0.0679 + 0.385i)13-s + (−0.0434 + 0.246i)14-s + (−0.688 + 0.577i)16-s + (0.470 − 0.814i)17-s + (−0.165 + 0.938i)18-s + (−0.810 − 1.40i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(−0.0581−0.998i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(−0.0581−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
−0.0581−0.998i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(526,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), −0.0581−0.998i)
|
Particular Values
L(1) |
≈ |
1.76391+1.86964i |
L(21) |
≈ |
1.76391+1.86964i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.70−0.300i)T |
| 5 | 1 |
good | 2 | 1+(−0.233−1.32i)T+(−1.87+0.684i)T2 |
| 7 | 1+(−0.652−0.237i)T+(5.36+4.49i)T2 |
| 11 | 1+(3.52−2.95i)T+(1.91−10.8i)T2 |
| 13 | 1+(0.245−1.39i)T+(−12.2−4.44i)T2 |
| 17 | 1+(−1.93+3.35i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3.53+6.11i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−3.59+1.30i)T+(17.6−14.7i)T2 |
| 29 | 1+(−0.851−4.82i)T+(−27.2+9.91i)T2 |
| 31 | 1+(−0.786+0.286i)T+(23.7−19.9i)T2 |
| 37 | 1+(−3.99+6.91i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.36−7.74i)T+(−38.5−14.0i)T2 |
| 43 | 1+(1.59−1.33i)T+(7.46−42.3i)T2 |
| 47 | 1+(6.46+2.35i)T+(36.0+30.2i)T2 |
| 53 | 1−3.05T+53T2 |
| 59 | 1+(6.82+5.72i)T+(10.2+58.1i)T2 |
| 61 | 1+(−8.12−2.95i)T+(46.7+39.2i)T2 |
| 67 | 1+(−1.64+9.30i)T+(−62.9−22.9i)T2 |
| 71 | 1+(−2.90+5.02i)T+(−35.5−61.4i)T2 |
| 73 | 1+(2.70+4.68i)T+(−36.5+63.2i)T2 |
| 79 | 1+(2.27+12.9i)T+(−74.2+27.0i)T2 |
| 83 | 1+(0.197+1.11i)T+(−77.9+28.3i)T2 |
| 89 | 1+(0.368+0.637i)T+(−44.5+77.0i)T2 |
| 97 | 1+(6.39−5.36i)T+(16.8−95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.63248009754263053023952847854, −9.678075685951945999896880585349, −8.798111116354010284389326469298, −7.937671794826592956222124819089, −7.25750403905601093116492320312, −6.58843120619302984898023133019, −5.01371616124218810612299370834, −4.70309415865211164949791064397, −2.92924545213226361576612813480, −2.01852628781566488668008560491,
1.34166349132634338594485166629, 2.52839805020763235455903558379, 3.35693026671192425824738746930, 4.24213228907600621135750554879, 5.71694183588434359539889084104, 6.88589316824613836655539426127, 8.098219047709833425723677865879, 8.221675208966312163814709902007, 9.722979154780473527885539840475, 10.33278592553543956286967106697