L(s) = 1 | − 1.25·2-s − 2.43·4-s + 7.62i·7-s + 8.05·8-s + 15.8i·11-s − 10.7i·13-s − 9.54i·14-s − 0.352·16-s + 1.55·17-s + 23.9·19-s − 19.7i·22-s − 33.5·23-s + 13.3i·26-s − 18.5i·28-s − 22.0i·29-s + ⋯ |
L(s) = 1 | − 0.626·2-s − 0.608·4-s + 1.08i·7-s + 1.00·8-s + 1.43i·11-s − 0.823i·13-s − 0.681i·14-s − 0.0220·16-s + 0.0916·17-s + 1.26·19-s − 0.899i·22-s − 1.45·23-s + 0.515i·26-s − 0.662i·28-s − 0.760i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.5426573894\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5426573894\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + 1.25T + 4T^{2} \) |
| 7 | \( 1 - 7.62iT - 49T^{2} \) |
| 11 | \( 1 - 15.8iT - 121T^{2} \) |
| 13 | \( 1 + 10.7iT - 169T^{2} \) |
| 17 | \( 1 - 1.55T + 289T^{2} \) |
| 19 | \( 1 - 23.9T + 361T^{2} \) |
| 23 | \( 1 + 33.5T + 529T^{2} \) |
| 29 | \( 1 + 22.0iT - 841T^{2} \) |
| 31 | \( 1 - 27.0T + 961T^{2} \) |
| 37 | \( 1 - 28.7iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 48.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 9.02iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 48.8T + 2.20e3T^{2} \) |
| 53 | \( 1 + 59.6T + 2.80e3T^{2} \) |
| 59 | \( 1 - 99.8iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 89.2T + 3.72e3T^{2} \) |
| 67 | \( 1 - 1.85iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 126. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 101. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 108.T + 6.24e3T^{2} \) |
| 83 | \( 1 + 3.54T + 6.88e3T^{2} \) |
| 89 | \( 1 + 108. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 88.8iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.08183289679515253733512319666, −9.934472303233586905059191602657, −9.021257237368028049315098381344, −8.062833090409821445954092678668, −7.55486481917330388432629028979, −6.15929772573683284827724798436, −5.17622863667633939765805250601, −4.34048492030556916759982748081, −2.84255686687177084424978280592, −1.49719110251746132132684143156,
0.27299783750831176187415578193, 1.41817343711524251144352439399, 3.39071391377200142011140146360, 4.22108690657305320322250587361, 5.33335275293745735185829642483, 6.49215518649692812400009596000, 7.57115618524398238528393110150, 8.192543154895431798433316406768, 9.129113913866660388093120379358, 9.838110560700434992202809463594