| L(s) = 1 | + 3.31·2-s + 7·4-s − 9i·7-s + 9.94·8-s − 13.2i·11-s − 10i·13-s − 29.8i·14-s + 5.00·16-s − 26.5·17-s + 29·19-s − 44i·22-s + 39.7·23-s − 33.1i·26-s − 63i·28-s + 26.5i·29-s + ⋯ |
| L(s) = 1 | + 1.65·2-s + 1.75·4-s − 1.28i·7-s + 1.24·8-s − 1.20i·11-s − 0.769i·13-s − 2.13i·14-s + 0.312·16-s − 1.56·17-s + 1.52·19-s − 2i·22-s + 1.73·23-s − 1.27i·26-s − 2.25i·28-s + 0.914i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(4.572187657\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.572187657\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 - 3.31T + 4T^{2} \) |
| 7 | \( 1 + 9iT - 49T^{2} \) |
| 11 | \( 1 + 13.2iT - 121T^{2} \) |
| 13 | \( 1 + 10iT - 169T^{2} \) |
| 17 | \( 1 + 26.5T + 289T^{2} \) |
| 19 | \( 1 - 29T + 361T^{2} \) |
| 23 | \( 1 - 39.7T + 529T^{2} \) |
| 29 | \( 1 - 26.5iT - 841T^{2} \) |
| 31 | \( 1 - 15T + 961T^{2} \) |
| 37 | \( 1 - 59iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 13.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 5iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 13.2T + 2.20e3T^{2} \) |
| 53 | \( 1 + 13.2T + 2.80e3T^{2} \) |
| 59 | \( 1 + 66.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 19T + 3.72e3T^{2} \) |
| 67 | \( 1 + 54iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 92.8iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 55iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 33T + 6.24e3T^{2} \) |
| 83 | \( 1 - 79.5T + 6.88e3T^{2} \) |
| 89 | \( 1 - 119. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 97iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71479806286390526276297936777, −9.352486816826627308639377889272, −8.176396782914396242002835361116, −7.06329898957489800268875280427, −6.50157394032459423973290137834, −5.32307137012240494034608627037, −4.66985418209471478824819346401, −3.51219660737484474604789266458, −2.93726541814227796793517080904, −0.974841992387178717693703864387,
2.05558665121985302428327278697, 2.79483436767701488264957715509, 4.15205092312095349499927769405, 4.92357157446188975655344286983, 5.67790025426564816432861833413, 6.69357035780664464509291616559, 7.34609799279355297378584268473, 8.929372433872187479015312017002, 9.434487169172113888128121126878, 10.89112257742651715196453273848