| L(s) = 1 | + 1.94·2-s − 0.213·4-s + 6.41i·7-s − 8.19·8-s − 2.74i·11-s − 20.3i·13-s + 12.4i·14-s − 15.1·16-s − 21.0·17-s − 13.6·19-s − 5.34i·22-s + 1.87·23-s − 39.5i·26-s − 1.36i·28-s − 6.98i·29-s + ⋯ |
| L(s) = 1 | + 0.972·2-s − 0.0532·4-s + 0.915i·7-s − 1.02·8-s − 0.249i·11-s − 1.56i·13-s + 0.891i·14-s − 0.943·16-s − 1.24·17-s − 0.719·19-s − 0.243i·22-s + 0.0815·23-s − 1.51i·26-s − 0.0487i·28-s − 0.240i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.4597804720\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4597804720\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 - 1.94T + 4T^{2} \) |
| 7 | \( 1 - 6.41iT - 49T^{2} \) |
| 11 | \( 1 + 2.74iT - 121T^{2} \) |
| 13 | \( 1 + 20.3iT - 169T^{2} \) |
| 17 | \( 1 + 21.0T + 289T^{2} \) |
| 19 | \( 1 + 13.6T + 361T^{2} \) |
| 23 | \( 1 - 1.87T + 529T^{2} \) |
| 29 | \( 1 + 6.98iT - 841T^{2} \) |
| 31 | \( 1 + 26.8T + 961T^{2} \) |
| 37 | \( 1 - 19.1iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 67.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 67.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 70.6T + 2.20e3T^{2} \) |
| 53 | \( 1 + 81.2T + 2.80e3T^{2} \) |
| 59 | \( 1 - 106. iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 13.4T + 3.72e3T^{2} \) |
| 67 | \( 1 - 63.0iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 32.1iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 123. iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 19.0T + 6.24e3T^{2} \) |
| 83 | \( 1 + 119.T + 6.88e3T^{2} \) |
| 89 | \( 1 + 152. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 16.4iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.981571455010913360503296987162, −8.801219579706209814715620466127, −8.492716675896144306958398999311, −7.06457120718643311972857362540, −5.91441743560920944970735499779, −5.44431818565003905395859705624, −4.39913874639737649256160650857, −3.31017115016063039251938125231, −2.33226660035210045733932523653, −0.11158419284066473873499988288,
1.89054224469789737759337853831, 3.38290950264006769148759611083, 4.41590093797536597467057201315, 4.75453006957967457898573019119, 6.33637137618137013663491157904, 6.73694968579246940729585734026, 8.003211033371720029693406650601, 9.107057801993248042769839289332, 9.655174865294847207740613555370, 11.00353914106403170755110920647