Properties

Label 2-675-135.94-c1-0-6
Degree $2$
Conductor $675$
Sign $-0.918 - 0.394i$
Analytic cond. $5.38990$
Root an. cond. $2.32161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.32 − 0.233i)2-s + (−0.300 + 1.70i)3-s + (−0.173 + 0.0632i)4-s + 2.33i·6-s + (0.237 − 0.652i)7-s + (−2.54 + 1.47i)8-s + (−2.81 − 1.02i)9-s + (−3.52 + 2.95i)11-s + (−0.0555 − 0.315i)12-s + (−1.39 − 0.245i)13-s + (0.162 − 0.921i)14-s + (−2.75 + 2.31i)16-s + (−3.35 − 1.93i)17-s + (−3.98 − 0.701i)18-s + (3.53 + 6.11i)19-s + ⋯
L(s)  = 1  + (0.938 − 0.165i)2-s + (−0.173 + 0.984i)3-s + (−0.0868 + 0.0316i)4-s + 0.952i·6-s + (0.0897 − 0.246i)7-s + (−0.901 + 0.520i)8-s + (−0.939 − 0.342i)9-s + (−1.06 + 0.890i)11-s + (−0.0160 − 0.0909i)12-s + (−0.385 − 0.0679i)13-s + (0.0434 − 0.246i)14-s + (−0.688 + 0.577i)16-s + (−0.814 − 0.470i)17-s + (−0.938 − 0.165i)18-s + (0.810 + 1.40i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.918 - 0.394i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.918 - 0.394i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $-0.918 - 0.394i$
Analytic conductor: \(5.38990\)
Root analytic conductor: \(2.32161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{675} (499, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :1/2),\ -0.918 - 0.394i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.207111 + 1.00755i\)
\(L(\frac12)\) \(\approx\) \(0.207111 + 1.00755i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.300 - 1.70i)T \)
5 \( 1 \)
good2 \( 1 + (-1.32 + 0.233i)T + (1.87 - 0.684i)T^{2} \)
7 \( 1 + (-0.237 + 0.652i)T + (-5.36 - 4.49i)T^{2} \)
11 \( 1 + (3.52 - 2.95i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (1.39 + 0.245i)T + (12.2 + 4.44i)T^{2} \)
17 \( 1 + (3.35 + 1.93i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-3.53 - 6.11i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-1.30 - 3.59i)T + (-17.6 + 14.7i)T^{2} \)
29 \( 1 + (0.851 + 4.82i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-0.786 + 0.286i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (6.91 + 3.99i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (1.36 - 7.74i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (1.33 + 1.59i)T + (-7.46 + 42.3i)T^{2} \)
47 \( 1 + (2.35 - 6.46i)T + (-36.0 - 30.2i)T^{2} \)
53 \( 1 - 3.05iT - 53T^{2} \)
59 \( 1 + (-6.82 - 5.72i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (-8.12 - 2.95i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (9.30 + 1.64i)T + (62.9 + 22.9i)T^{2} \)
71 \( 1 + (-2.90 + 5.02i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-4.68 + 2.70i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-2.27 - 12.9i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (-1.11 + 0.197i)T + (77.9 - 28.3i)T^{2} \)
89 \( 1 + (-0.368 - 0.637i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-5.36 - 6.39i)T + (-16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94040078131962786884396309620, −9.984557415827740361558359387009, −9.438294498897692992046778941504, −8.326887502639630590581186986575, −7.37544855054741443987045256808, −5.92333869473176599986703277849, −5.17139307978053558811488085590, −4.49404417559745415905614292010, −3.57610653303171274586826565959, −2.50679298021494174889355704822, 0.38994917036326733227311862101, 2.40108414581629192260220702580, 3.38169893691561332542805514666, 5.00650865370543436142862907868, 5.36880619298302802133444556773, 6.51347444925012189376122919599, 7.14695504223167205053281656194, 8.463647418398124602399870967266, 8.909032932960880472626132263464, 10.32667926502934010014354355638

Graph of the $Z$-function along the critical line