L(s) = 1 | + (1.32 − 0.233i)2-s + (−0.300 + 1.70i)3-s + (−0.173 + 0.0632i)4-s + 2.33i·6-s + (0.237 − 0.652i)7-s + (−2.54 + 1.47i)8-s + (−2.81 − 1.02i)9-s + (−3.52 + 2.95i)11-s + (−0.0555 − 0.315i)12-s + (−1.39 − 0.245i)13-s + (0.162 − 0.921i)14-s + (−2.75 + 2.31i)16-s + (−3.35 − 1.93i)17-s + (−3.98 − 0.701i)18-s + (3.53 + 6.11i)19-s + ⋯ |
L(s) = 1 | + (0.938 − 0.165i)2-s + (−0.173 + 0.984i)3-s + (−0.0868 + 0.0316i)4-s + 0.952i·6-s + (0.0897 − 0.246i)7-s + (−0.901 + 0.520i)8-s + (−0.939 − 0.342i)9-s + (−1.06 + 0.890i)11-s + (−0.0160 − 0.0909i)12-s + (−0.385 − 0.0679i)13-s + (0.0434 − 0.246i)14-s + (−0.688 + 0.577i)16-s + (−0.814 − 0.470i)17-s + (−0.938 − 0.165i)18-s + (0.810 + 1.40i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(−0.918−0.394i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(−0.918−0.394i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
−0.918−0.394i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(499,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), −0.918−0.394i)
|
Particular Values
L(1) |
≈ |
0.207111+1.00755i |
L(21) |
≈ |
0.207111+1.00755i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.300−1.70i)T |
| 5 | 1 |
good | 2 | 1+(−1.32+0.233i)T+(1.87−0.684i)T2 |
| 7 | 1+(−0.237+0.652i)T+(−5.36−4.49i)T2 |
| 11 | 1+(3.52−2.95i)T+(1.91−10.8i)T2 |
| 13 | 1+(1.39+0.245i)T+(12.2+4.44i)T2 |
| 17 | 1+(3.35+1.93i)T+(8.5+14.7i)T2 |
| 19 | 1+(−3.53−6.11i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.30−3.59i)T+(−17.6+14.7i)T2 |
| 29 | 1+(0.851+4.82i)T+(−27.2+9.91i)T2 |
| 31 | 1+(−0.786+0.286i)T+(23.7−19.9i)T2 |
| 37 | 1+(6.91+3.99i)T+(18.5+32.0i)T2 |
| 41 | 1+(1.36−7.74i)T+(−38.5−14.0i)T2 |
| 43 | 1+(1.33+1.59i)T+(−7.46+42.3i)T2 |
| 47 | 1+(2.35−6.46i)T+(−36.0−30.2i)T2 |
| 53 | 1−3.05iT−53T2 |
| 59 | 1+(−6.82−5.72i)T+(10.2+58.1i)T2 |
| 61 | 1+(−8.12−2.95i)T+(46.7+39.2i)T2 |
| 67 | 1+(9.30+1.64i)T+(62.9+22.9i)T2 |
| 71 | 1+(−2.90+5.02i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−4.68+2.70i)T+(36.5−63.2i)T2 |
| 79 | 1+(−2.27−12.9i)T+(−74.2+27.0i)T2 |
| 83 | 1+(−1.11+0.197i)T+(77.9−28.3i)T2 |
| 89 | 1+(−0.368−0.637i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−5.36−6.39i)T+(−16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.94040078131962786884396309620, −9.984557415827740361558359387009, −9.438294498897692992046778941504, −8.326887502639630590581186986575, −7.37544855054741443987045256808, −5.92333869473176599986703277849, −5.17139307978053558811488085590, −4.49404417559745415905614292010, −3.57610653303171274586826565959, −2.50679298021494174889355704822,
0.38994917036326733227311862101, 2.40108414581629192260220702580, 3.38169893691561332542805514666, 5.00650865370543436142862907868, 5.36880619298302802133444556773, 6.51347444925012189376122919599, 7.14695504223167205053281656194, 8.463647418398124602399870967266, 8.909032932960880472626132263464, 10.32667926502934010014354355638