Properties

Label 2-672-8.5-c1-0-8
Degree $2$
Conductor $672$
Sign $-0.0806 + 0.996i$
Analytic cond. $5.36594$
Root an. cond. $2.31645$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + 1.12i·5-s − 7-s − 9-s − 4.76i·11-s − 0.456i·13-s + 1.12·15-s + 0.415·17-s − 7.63i·19-s + i·21-s − 1.58·23-s + 3.72·25-s + i·27-s − 6.72i·29-s + 5.89·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + 0.504i·5-s − 0.377·7-s − 0.333·9-s − 1.43i·11-s − 0.126i·13-s + 0.291·15-s + 0.100·17-s − 1.75i·19-s + 0.218i·21-s − 0.330·23-s + 0.745·25-s + 0.192i·27-s − 1.24i·29-s + 1.05·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0806 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0806 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $-0.0806 + 0.996i$
Analytic conductor: \(5.36594\)
Root analytic conductor: \(2.31645\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{672} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 672,\ (\ :1/2),\ -0.0806 + 0.996i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.817191 - 0.885987i\)
\(L(\frac12)\) \(\approx\) \(0.817191 - 0.885987i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
7 \( 1 + T \)
good5 \( 1 - 1.12iT - 5T^{2} \)
11 \( 1 + 4.76iT - 11T^{2} \)
13 \( 1 + 0.456iT - 13T^{2} \)
17 \( 1 - 0.415T + 17T^{2} \)
19 \( 1 + 7.63iT - 19T^{2} \)
23 \( 1 + 1.58T + 23T^{2} \)
29 \( 1 + 6.72iT - 29T^{2} \)
31 \( 1 - 5.89T + 31T^{2} \)
37 \( 1 + 5.89iT - 37T^{2} \)
41 \( 1 + 0.415T + 41T^{2} \)
43 \( 1 - 9.43iT - 43T^{2} \)
47 \( 1 + 11.2T + 47T^{2} \)
53 \( 1 + 7.63iT - 53T^{2} \)
59 \( 1 - 4iT - 59T^{2} \)
61 \( 1 - 1.80iT - 61T^{2} \)
67 \( 1 + 8.09iT - 67T^{2} \)
71 \( 1 + 10.2T + 71T^{2} \)
73 \( 1 + 3.34T + 73T^{2} \)
79 \( 1 - 4.83T + 79T^{2} \)
83 \( 1 - 5.53iT - 83T^{2} \)
89 \( 1 - 4.92T + 89T^{2} \)
97 \( 1 - 16.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39437579334748864153724868126, −9.332771554494283214426506256042, −8.489318592901268744997481028118, −7.64377110455079001001612965512, −6.58212053187187790824094701773, −6.09070650266674010681489188302, −4.82513064607062105979023788244, −3.35151951317659564134683822012, −2.55423358264363743807354881153, −0.65598735063407581382633387420, 1.67812458116808409065748220128, 3.23297899597053526629589846514, 4.34742679918832510305077508914, 5.10447322469561774764906262652, 6.22021168595438117023328059903, 7.23637952681003013110710467551, 8.263586164551981682758355305099, 9.084384043901513228314544406795, 10.08821969118824940901067057829, 10.28932016128989123630810383501

Graph of the $Z$-function along the critical line