L(s) = 1 | + (−3.69 − 3.65i)3-s + 14.9i·5-s − 7i·7-s + (0.293 + 26.9i)9-s + 22.9·11-s + 21.5·13-s + (54.7 − 55.3i)15-s + 13.7i·17-s − 56.8i·19-s + (−25.5 + 25.8i)21-s − 20.1·23-s − 99.3·25-s + (97.5 − 100. i)27-s + 2.91i·29-s − 61.0i·31-s + ⋯ |
L(s) = 1 | + (−0.710 − 0.703i)3-s + 1.33i·5-s − 0.377i·7-s + (0.0108 + 0.999i)9-s + 0.628·11-s + 0.459·13-s + (0.942 − 0.952i)15-s + 0.196i·17-s − 0.686i·19-s + (−0.265 + 0.268i)21-s − 0.182·23-s − 0.794·25-s + (0.695 − 0.718i)27-s + 0.0186i·29-s − 0.353i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00544 - 0.999i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.00544 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.128496136\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.128496136\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (3.69 + 3.65i)T \) |
| 7 | \( 1 + 7iT \) |
good | 5 | \( 1 - 14.9iT - 125T^{2} \) |
| 11 | \( 1 - 22.9T + 1.33e3T^{2} \) |
| 13 | \( 1 - 21.5T + 2.19e3T^{2} \) |
| 17 | \( 1 - 13.7iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 56.8iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 20.1T + 1.21e4T^{2} \) |
| 29 | \( 1 - 2.91iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 61.0iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 157.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 408. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 523. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 268.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 507. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 684.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 151.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 48.5iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 401.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 400.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 857. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 5.34T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.58e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.61e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50011403789610145926467831047, −9.719205508867231937490801265121, −8.355898809216692673833121479441, −7.46703416301257385690165608018, −6.60661537138311964258898005107, −6.28213169501009062166583048873, −4.94786959603756155332215152950, −3.66875933508231623482833552489, −2.49539062966434237054826054258, −1.17039701357562626013920002464,
0.39872156131148872350240876638, 1.60840060943289064122464147652, 3.56045159991724404029645150870, 4.42075615963827564839727984132, 5.34702383246156196214639224890, 5.96361282947449637010761100940, 7.14672592399976361913865690643, 8.648079522806395918374708124220, 8.877854972066087922680744593450, 9.885026414227245721840000276126