Properties

Label 2-672-1.1-c3-0-4
Degree $2$
Conductor $672$
Sign $1$
Analytic cond. $39.6492$
Root an. cond. $6.29676$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 2.63·5-s + 7·7-s + 9·9-s − 24.4·11-s − 83.0·13-s + 7.89·15-s + 110.·17-s + 26.7·19-s − 21·21-s + 50.1·23-s − 118.·25-s − 27·27-s − 16.7·29-s + 129.·31-s + 73.2·33-s − 18.4·35-s + 122.·37-s + 249.·39-s − 417.·41-s + 153.·43-s − 23.6·45-s − 175.·47-s + 49·49-s − 330.·51-s − 487.·53-s + 64.3·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.235·5-s + 0.377·7-s + 0.333·9-s − 0.669·11-s − 1.77·13-s + 0.135·15-s + 1.57·17-s + 0.322·19-s − 0.218·21-s + 0.454·23-s − 0.944·25-s − 0.192·27-s − 0.107·29-s + 0.748·31-s + 0.386·33-s − 0.0890·35-s + 0.543·37-s + 1.02·39-s − 1.59·41-s + 0.543·43-s − 0.0785·45-s − 0.545·47-s + 0.142·49-s − 0.907·51-s − 1.26·53-s + 0.157·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $1$
Analytic conductor: \(39.6492\)
Root analytic conductor: \(6.29676\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 672,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.274171791\)
\(L(\frac12)\) \(\approx\) \(1.274171791\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
7 \( 1 - 7T \)
good5 \( 1 + 2.63T + 125T^{2} \)
11 \( 1 + 24.4T + 1.33e3T^{2} \)
13 \( 1 + 83.0T + 2.19e3T^{2} \)
17 \( 1 - 110.T + 4.91e3T^{2} \)
19 \( 1 - 26.7T + 6.85e3T^{2} \)
23 \( 1 - 50.1T + 1.21e4T^{2} \)
29 \( 1 + 16.7T + 2.43e4T^{2} \)
31 \( 1 - 129.T + 2.97e4T^{2} \)
37 \( 1 - 122.T + 5.06e4T^{2} \)
41 \( 1 + 417.T + 6.89e4T^{2} \)
43 \( 1 - 153.T + 7.95e4T^{2} \)
47 \( 1 + 175.T + 1.03e5T^{2} \)
53 \( 1 + 487.T + 1.48e5T^{2} \)
59 \( 1 - 496.T + 2.05e5T^{2} \)
61 \( 1 - 274.T + 2.26e5T^{2} \)
67 \( 1 - 396.T + 3.00e5T^{2} \)
71 \( 1 - 844.T + 3.57e5T^{2} \)
73 \( 1 - 895.T + 3.89e5T^{2} \)
79 \( 1 - 1.31e3T + 4.93e5T^{2} \)
83 \( 1 - 1.36e3T + 5.71e5T^{2} \)
89 \( 1 - 683.T + 7.04e5T^{2} \)
97 \( 1 - 1.43e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01288080054549075613535605533, −9.589609372386440342928244186054, −8.010620270195945012064933023109, −7.64778218661105754150284479547, −6.57884678652091473885235923400, −5.29357869374435849339575101114, −4.93013828432329278639156850869, −3.49944081804925702356506570638, −2.21765101221328420601629447104, −0.66443723206077433171751991017, 0.66443723206077433171751991017, 2.21765101221328420601629447104, 3.49944081804925702356506570638, 4.93013828432329278639156850869, 5.29357869374435849339575101114, 6.57884678652091473885235923400, 7.64778218661105754150284479547, 8.010620270195945012064933023109, 9.589609372386440342928244186054, 10.01288080054549075613535605533

Graph of the $Z$-function along the critical line