Properties

Label 2-672-1.1-c3-0-34
Degree $2$
Conductor $672$
Sign $-1$
Analytic cond. $39.6492$
Root an. cond. $6.29676$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 10.6·5-s − 7·7-s + 9·9-s − 68.4·11-s + 23.0·13-s + 31.8·15-s − 62.2·17-s − 53.2·19-s − 21·21-s − 89.8·23-s − 11.9·25-s + 27·27-s − 43.2·29-s − 102.·31-s − 205.·33-s − 74.4·35-s − 302.·37-s + 69.1·39-s + 73.4·41-s + 377.·43-s + 95.6·45-s − 487.·47-s + 49·49-s − 186.·51-s + 467.·53-s − 727.·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.951·5-s − 0.377·7-s + 0.333·9-s − 1.87·11-s + 0.492·13-s + 0.549·15-s − 0.887·17-s − 0.643·19-s − 0.218·21-s − 0.815·23-s − 0.0954·25-s + 0.192·27-s − 0.277·29-s − 0.595·31-s − 1.08·33-s − 0.359·35-s − 1.34·37-s + 0.284·39-s + 0.279·41-s + 1.33·43-s + 0.317·45-s − 1.51·47-s + 0.142·49-s − 0.512·51-s + 1.21·53-s − 1.78·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(39.6492\)
Root analytic conductor: \(6.29676\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 672,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
7 \( 1 + 7T \)
good5 \( 1 - 10.6T + 125T^{2} \)
11 \( 1 + 68.4T + 1.33e3T^{2} \)
13 \( 1 - 23.0T + 2.19e3T^{2} \)
17 \( 1 + 62.2T + 4.91e3T^{2} \)
19 \( 1 + 53.2T + 6.85e3T^{2} \)
23 \( 1 + 89.8T + 1.21e4T^{2} \)
29 \( 1 + 43.2T + 2.43e4T^{2} \)
31 \( 1 + 102.T + 2.97e4T^{2} \)
37 \( 1 + 302.T + 5.06e4T^{2} \)
41 \( 1 - 73.4T + 6.89e4T^{2} \)
43 \( 1 - 377.T + 7.95e4T^{2} \)
47 \( 1 + 487.T + 1.03e5T^{2} \)
53 \( 1 - 467.T + 1.48e5T^{2} \)
59 \( 1 - 432.T + 2.05e5T^{2} \)
61 \( 1 + 70.4T + 2.26e5T^{2} \)
67 \( 1 + 475.T + 3.00e5T^{2} \)
71 \( 1 - 680.T + 3.57e5T^{2} \)
73 \( 1 - 604.T + 3.89e5T^{2} \)
79 \( 1 + 329.T + 4.93e5T^{2} \)
83 \( 1 + 834.T + 5.71e5T^{2} \)
89 \( 1 + 947.T + 7.04e5T^{2} \)
97 \( 1 - 661.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.745361015780953176444784491813, −8.797810610596652073914812714147, −8.063375487041641279414039284218, −7.04527242191358544064849249382, −6.00775052306050073352414982563, −5.21878200032402990488802631761, −3.93832880410780802369591439489, −2.65685688973193939387331508531, −1.93308072396651828791255861111, 0, 1.93308072396651828791255861111, 2.65685688973193939387331508531, 3.93832880410780802369591439489, 5.21878200032402990488802631761, 6.00775052306050073352414982563, 7.04527242191358544064849249382, 8.063375487041641279414039284218, 8.797810610596652073914812714147, 9.745361015780953176444784491813

Graph of the $Z$-function along the critical line