Properties

Label 2-672-1.1-c3-0-26
Degree $2$
Conductor $672$
Sign $-1$
Analytic cond. $39.6492$
Root an. cond. $6.29676$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 10.1·5-s − 7·7-s + 9·9-s + 36.1·11-s − 74.6·13-s − 30.4·15-s − 91.1·17-s + 104.·19-s + 21·21-s − 36.8·23-s − 21.6·25-s − 27·27-s − 262.·29-s + 310.·31-s − 108.·33-s − 71.1·35-s + 285.·37-s + 223.·39-s + 62.4·41-s − 386.·43-s + 91.4·45-s − 430.·47-s + 49·49-s + 273.·51-s + 111.·53-s + 367.·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.909·5-s − 0.377·7-s + 0.333·9-s + 0.991·11-s − 1.59·13-s − 0.524·15-s − 1.30·17-s + 1.25·19-s + 0.218·21-s − 0.333·23-s − 0.173·25-s − 0.192·27-s − 1.68·29-s + 1.80·31-s − 0.572·33-s − 0.343·35-s + 1.26·37-s + 0.919·39-s + 0.238·41-s − 1.37·43-s + 0.303·45-s − 1.33·47-s + 0.142·49-s + 0.750·51-s + 0.290·53-s + 0.901·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(39.6492\)
Root analytic conductor: \(6.29676\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 672,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
7 \( 1 + 7T \)
good5 \( 1 - 10.1T + 125T^{2} \)
11 \( 1 - 36.1T + 1.33e3T^{2} \)
13 \( 1 + 74.6T + 2.19e3T^{2} \)
17 \( 1 + 91.1T + 4.91e3T^{2} \)
19 \( 1 - 104.T + 6.85e3T^{2} \)
23 \( 1 + 36.8T + 1.21e4T^{2} \)
29 \( 1 + 262.T + 2.43e4T^{2} \)
31 \( 1 - 310.T + 2.97e4T^{2} \)
37 \( 1 - 285.T + 5.06e4T^{2} \)
41 \( 1 - 62.4T + 6.89e4T^{2} \)
43 \( 1 + 386.T + 7.95e4T^{2} \)
47 \( 1 + 430.T + 1.03e5T^{2} \)
53 \( 1 - 111.T + 1.48e5T^{2} \)
59 \( 1 - 479.T + 2.05e5T^{2} \)
61 \( 1 + 602.T + 2.26e5T^{2} \)
67 \( 1 + 1.02e3T + 3.00e5T^{2} \)
71 \( 1 + 284.T + 3.57e5T^{2} \)
73 \( 1 + 566.T + 3.89e5T^{2} \)
79 \( 1 - 94.2T + 4.93e5T^{2} \)
83 \( 1 + 626.T + 5.71e5T^{2} \)
89 \( 1 - 1.53e3T + 7.04e5T^{2} \)
97 \( 1 - 718.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.625898994121775751760847080970, −9.234806895157857096730080857557, −7.76103533191379524461569709658, −6.80848138678544099617691956921, −6.13719591867732056027061649884, −5.16950472007681514706822819756, −4.23116663936483032183311853702, −2.73228219828213989754497990683, −1.56788535932577464917786841279, 0, 1.56788535932577464917786841279, 2.73228219828213989754497990683, 4.23116663936483032183311853702, 5.16950472007681514706822819756, 6.13719591867732056027061649884, 6.80848138678544099617691956921, 7.76103533191379524461569709658, 9.234806895157857096730080857557, 9.625898994121775751760847080970

Graph of the $Z$-function along the critical line