L(s) = 1 | + 3·3-s − 18·5-s − 7·7-s + 9·9-s + 44·11-s + 58·13-s − 54·15-s − 130·17-s + 92·19-s − 21·21-s + 84·23-s + 199·25-s + 27·27-s − 250·29-s − 72·31-s + 132·33-s + 126·35-s − 354·37-s + 174·39-s + 334·41-s − 416·43-s − 162·45-s − 464·47-s + 49·49-s − 390·51-s − 450·53-s − 792·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.60·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s + 1.23·13-s − 0.929·15-s − 1.85·17-s + 1.11·19-s − 0.218·21-s + 0.761·23-s + 1.59·25-s + 0.192·27-s − 1.60·29-s − 0.417·31-s + 0.696·33-s + 0.608·35-s − 1.57·37-s + 0.714·39-s + 1.27·41-s − 1.47·43-s − 0.536·45-s − 1.44·47-s + 1/7·49-s − 1.07·51-s − 1.16·53-s − 1.94·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - p T \) |
| 7 | \( 1 + p T \) |
good | 5 | \( 1 + 18 T + p^{3} T^{2} \) |
| 11 | \( 1 - 4 p T + p^{3} T^{2} \) |
| 13 | \( 1 - 58 T + p^{3} T^{2} \) |
| 17 | \( 1 + 130 T + p^{3} T^{2} \) |
| 19 | \( 1 - 92 T + p^{3} T^{2} \) |
| 23 | \( 1 - 84 T + p^{3} T^{2} \) |
| 29 | \( 1 + 250 T + p^{3} T^{2} \) |
| 31 | \( 1 + 72 T + p^{3} T^{2} \) |
| 37 | \( 1 + 354 T + p^{3} T^{2} \) |
| 41 | \( 1 - 334 T + p^{3} T^{2} \) |
| 43 | \( 1 + 416 T + p^{3} T^{2} \) |
| 47 | \( 1 + 464 T + p^{3} T^{2} \) |
| 53 | \( 1 + 450 T + p^{3} T^{2} \) |
| 59 | \( 1 + 516 T + p^{3} T^{2} \) |
| 61 | \( 1 - 58 T + p^{3} T^{2} \) |
| 67 | \( 1 + 656 T + p^{3} T^{2} \) |
| 71 | \( 1 + 940 T + p^{3} T^{2} \) |
| 73 | \( 1 - 178 T + p^{3} T^{2} \) |
| 79 | \( 1 - 1072 T + p^{3} T^{2} \) |
| 83 | \( 1 - 660 T + p^{3} T^{2} \) |
| 89 | \( 1 - 1254 T + p^{3} T^{2} \) |
| 97 | \( 1 - 210 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.216556068944291458172360078718, −8.954499303977015815643929644696, −7.952690024968852213568862812122, −7.10418368726415915784671567816, −6.38239995770611608240150085278, −4.75787935508132882912913974456, −3.75754707965858407172316006005, −3.33369351550640769775442041686, −1.51204115270713111928127754074, 0,
1.51204115270713111928127754074, 3.33369351550640769775442041686, 3.75754707965858407172316006005, 4.75787935508132882912913974456, 6.38239995770611608240150085278, 7.10418368726415915784671567816, 7.952690024968852213568862812122, 8.954499303977015815643929644696, 9.216556068944291458172360078718