Properties

Label 2-672-1.1-c3-0-24
Degree $2$
Conductor $672$
Sign $-1$
Analytic cond. $39.6492$
Root an. cond. $6.29676$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 18·5-s − 7·7-s + 9·9-s + 44·11-s + 58·13-s − 54·15-s − 130·17-s + 92·19-s − 21·21-s + 84·23-s + 199·25-s + 27·27-s − 250·29-s − 72·31-s + 132·33-s + 126·35-s − 354·37-s + 174·39-s + 334·41-s − 416·43-s − 162·45-s − 464·47-s + 49·49-s − 390·51-s − 450·53-s − 792·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.60·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s + 1.23·13-s − 0.929·15-s − 1.85·17-s + 1.11·19-s − 0.218·21-s + 0.761·23-s + 1.59·25-s + 0.192·27-s − 1.60·29-s − 0.417·31-s + 0.696·33-s + 0.608·35-s − 1.57·37-s + 0.714·39-s + 1.27·41-s − 1.47·43-s − 0.536·45-s − 1.44·47-s + 1/7·49-s − 1.07·51-s − 1.16·53-s − 1.94·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(39.6492\)
Root analytic conductor: \(6.29676\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 672,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
7 \( 1 + p T \)
good5 \( 1 + 18 T + p^{3} T^{2} \)
11 \( 1 - 4 p T + p^{3} T^{2} \)
13 \( 1 - 58 T + p^{3} T^{2} \)
17 \( 1 + 130 T + p^{3} T^{2} \)
19 \( 1 - 92 T + p^{3} T^{2} \)
23 \( 1 - 84 T + p^{3} T^{2} \)
29 \( 1 + 250 T + p^{3} T^{2} \)
31 \( 1 + 72 T + p^{3} T^{2} \)
37 \( 1 + 354 T + p^{3} T^{2} \)
41 \( 1 - 334 T + p^{3} T^{2} \)
43 \( 1 + 416 T + p^{3} T^{2} \)
47 \( 1 + 464 T + p^{3} T^{2} \)
53 \( 1 + 450 T + p^{3} T^{2} \)
59 \( 1 + 516 T + p^{3} T^{2} \)
61 \( 1 - 58 T + p^{3} T^{2} \)
67 \( 1 + 656 T + p^{3} T^{2} \)
71 \( 1 + 940 T + p^{3} T^{2} \)
73 \( 1 - 178 T + p^{3} T^{2} \)
79 \( 1 - 1072 T + p^{3} T^{2} \)
83 \( 1 - 660 T + p^{3} T^{2} \)
89 \( 1 - 1254 T + p^{3} T^{2} \)
97 \( 1 - 210 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.216556068944291458172360078718, −8.954499303977015815643929644696, −7.952690024968852213568862812122, −7.10418368726415915784671567816, −6.38239995770611608240150085278, −4.75787935508132882912913974456, −3.75754707965858407172316006005, −3.33369351550640769775442041686, −1.51204115270713111928127754074, 0, 1.51204115270713111928127754074, 3.33369351550640769775442041686, 3.75754707965858407172316006005, 4.75787935508132882912913974456, 6.38239995770611608240150085278, 7.10418368726415915784671567816, 7.952690024968852213568862812122, 8.954499303977015815643929644696, 9.216556068944291458172360078718

Graph of the $Z$-function along the critical line