Properties

Label 2-672-1.1-c3-0-21
Degree $2$
Conductor $672$
Sign $-1$
Analytic cond. $39.6492$
Root an. cond. $6.29676$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 14.1·5-s − 7·7-s + 9·9-s + 11.8·11-s + 22.6·13-s + 42.4·15-s + 79.1·17-s + 55.6·19-s + 21·21-s + 84.8·23-s + 75.6·25-s − 27·27-s − 117.·29-s − 126.·31-s − 35.5·33-s + 99.1·35-s − 201.·37-s − 67.9·39-s − 10.4·41-s + 2.64·43-s − 127.·45-s + 494.·47-s + 49·49-s − 237.·51-s − 763.·53-s − 167.·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.26·5-s − 0.377·7-s + 0.333·9-s + 0.324·11-s + 0.483·13-s + 0.731·15-s + 1.12·17-s + 0.672·19-s + 0.218·21-s + 0.769·23-s + 0.605·25-s − 0.192·27-s − 0.749·29-s − 0.735·31-s − 0.187·33-s + 0.478·35-s − 0.894·37-s − 0.279·39-s − 0.0399·41-s + 0.00939·43-s − 0.422·45-s + 1.53·47-s + 0.142·49-s − 0.652·51-s − 1.97·53-s − 0.410·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(39.6492\)
Root analytic conductor: \(6.29676\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 672,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
7 \( 1 + 7T \)
good5 \( 1 + 14.1T + 125T^{2} \)
11 \( 1 - 11.8T + 1.33e3T^{2} \)
13 \( 1 - 22.6T + 2.19e3T^{2} \)
17 \( 1 - 79.1T + 4.91e3T^{2} \)
19 \( 1 - 55.6T + 6.85e3T^{2} \)
23 \( 1 - 84.8T + 1.21e4T^{2} \)
29 \( 1 + 117.T + 2.43e4T^{2} \)
31 \( 1 + 126.T + 2.97e4T^{2} \)
37 \( 1 + 201.T + 5.06e4T^{2} \)
41 \( 1 + 10.4T + 6.89e4T^{2} \)
43 \( 1 - 2.64T + 7.95e4T^{2} \)
47 \( 1 - 494.T + 1.03e5T^{2} \)
53 \( 1 + 763.T + 1.48e5T^{2} \)
59 \( 1 + 55.6T + 2.05e5T^{2} \)
61 \( 1 + 457.T + 2.26e5T^{2} \)
67 \( 1 + 291.T + 3.00e5T^{2} \)
71 \( 1 - 956.T + 3.57e5T^{2} \)
73 \( 1 + 517.T + 3.89e5T^{2} \)
79 \( 1 + 830.T + 4.93e5T^{2} \)
83 \( 1 - 346.T + 5.71e5T^{2} \)
89 \( 1 + 584.T + 7.04e5T^{2} \)
97 \( 1 - 85.6T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.695601365936473881832753304820, −8.815744397658140874485122066317, −7.70886950295627222707911994812, −7.18164713581339563446385929608, −6.05032997801427608058716078493, −5.10467779556485413776904895099, −3.93186550577710018873271721211, −3.22993041579044111200056791337, −1.24734276790981884249190994234, 0, 1.24734276790981884249190994234, 3.22993041579044111200056791337, 3.93186550577710018873271721211, 5.10467779556485413776904895099, 6.05032997801427608058716078493, 7.18164713581339563446385929608, 7.70886950295627222707911994812, 8.815744397658140874485122066317, 9.695601365936473881832753304820

Graph of the $Z$-function along the critical line