Properties

Label 2-66e2-11.10-c2-0-4
Degree $2$
Conductor $4356$
Sign $0.372 - 0.927i$
Analytic cond. $118.692$
Root an. cond. $10.8946$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.56·5-s − 11.5i·7-s + 5.05i·13-s − 8.56i·17-s − 10.8i·19-s − 11.7·23-s + 18.0·25-s + 20.2i·29-s − 36.4·31-s + 75.5i·35-s − 36.8·37-s + 42.3i·41-s − 72.4i·43-s + 10.9·47-s − 83.6·49-s + ⋯
L(s)  = 1  − 1.31·5-s − 1.64i·7-s + 0.389i·13-s − 0.504i·17-s − 0.570i·19-s − 0.510·23-s + 0.721·25-s + 0.697i·29-s − 1.17·31-s + 2.15i·35-s − 0.997·37-s + 1.03i·41-s − 1.68i·43-s + 0.232·47-s − 1.70·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4356 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.372 - 0.927i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4356 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.372 - 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4356\)    =    \(2^{2} \cdot 3^{2} \cdot 11^{2}\)
Sign: $0.372 - 0.927i$
Analytic conductor: \(118.692\)
Root analytic conductor: \(10.8946\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{4356} (1693, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4356,\ (\ :1),\ 0.372 - 0.927i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2743433298\)
\(L(\frac12)\) \(\approx\) \(0.2743433298\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 + 6.56T + 25T^{2} \)
7 \( 1 + 11.5iT - 49T^{2} \)
13 \( 1 - 5.05iT - 169T^{2} \)
17 \( 1 + 8.56iT - 289T^{2} \)
19 \( 1 + 10.8iT - 361T^{2} \)
23 \( 1 + 11.7T + 529T^{2} \)
29 \( 1 - 20.2iT - 841T^{2} \)
31 \( 1 + 36.4T + 961T^{2} \)
37 \( 1 + 36.8T + 1.36e3T^{2} \)
41 \( 1 - 42.3iT - 1.68e3T^{2} \)
43 \( 1 + 72.4iT - 1.84e3T^{2} \)
47 \( 1 - 10.9T + 2.20e3T^{2} \)
53 \( 1 + 72.3T + 2.80e3T^{2} \)
59 \( 1 + 4.47T + 3.48e3T^{2} \)
61 \( 1 + 108. iT - 3.72e3T^{2} \)
67 \( 1 + 37.6T + 4.48e3T^{2} \)
71 \( 1 - 53.6T + 5.04e3T^{2} \)
73 \( 1 - 24.9iT - 5.32e3T^{2} \)
79 \( 1 + 71.2iT - 6.24e3T^{2} \)
83 \( 1 - 11.5iT - 6.88e3T^{2} \)
89 \( 1 - 75.6T + 7.92e3T^{2} \)
97 \( 1 - 2.98T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.167918440104545316055331301966, −7.45405689724060638573068252589, −7.15202150483318198839709867420, −6.42006311142863813175176272504, −5.10580479551838871649514748182, −4.49249984088769181422570579341, −3.73111632711267677045597683647, −3.30081068529877023538178196721, −1.80110107862901695860885679033, −0.63041656370904716051226782672, 0.088024883767239922842884979323, 1.64497299179333872950345306588, 2.62379495013134402207503821783, 3.49128411267255339171521633896, 4.17877626655380186430363797038, 5.18355990058950272631526837400, 5.81028599459486219932118310791, 6.52742468030157312540256574905, 7.65293222601953339497315674016, 7.978299954188661145797516761261

Graph of the $Z$-function along the critical line