Properties

Label 2-669-223.100-c1-0-17
Degree $2$
Conductor $669$
Sign $-0.828 + 0.560i$
Analytic cond. $5.34199$
Root an. cond. $2.31127$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.81 − 1.46i)2-s + (0.238 + 0.971i)3-s + (0.729 + 3.38i)4-s + (−1.00 + 1.53i)5-s + (0.992 − 2.11i)6-s + (−4.01 + 1.04i)7-s + (1.53 − 3.04i)8-s + (−0.886 + 0.462i)9-s + (4.07 − 1.31i)10-s + (2.62 + 3.76i)11-s + (−3.11 + 1.51i)12-s + (−4.49 − 4.30i)13-s + (8.83 + 3.99i)14-s + (−1.72 − 0.610i)15-s + (−0.960 + 0.434i)16-s + (2.79 − 0.237i)17-s + ⋯
L(s)  = 1  + (−1.28 − 1.03i)2-s + (0.137 + 0.560i)3-s + (0.364 + 1.69i)4-s + (−0.449 + 0.685i)5-s + (0.405 − 0.863i)6-s + (−1.51 + 0.395i)7-s + (0.543 − 1.07i)8-s + (−0.295 + 0.154i)9-s + (1.28 − 0.414i)10-s + (0.791 + 1.13i)11-s + (−0.898 + 0.437i)12-s + (−1.24 − 1.19i)13-s + (2.36 + 1.06i)14-s + (−0.446 − 0.157i)15-s + (−0.240 + 0.108i)16-s + (0.677 − 0.0576i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.828 + 0.560i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.828 + 0.560i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(669\)    =    \(3 \cdot 223\)
Sign: $-0.828 + 0.560i$
Analytic conductor: \(5.34199\)
Root analytic conductor: \(2.31127\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{669} (100, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 669,\ (\ :1/2),\ -0.828 + 0.560i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0322167 - 0.105135i\)
\(L(\frac12)\) \(\approx\) \(0.0322167 - 0.105135i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.238 - 0.971i)T \)
223 \( 1 + (-7.17 + 13.0i)T \)
good2 \( 1 + (1.81 + 1.46i)T + (0.421 + 1.95i)T^{2} \)
5 \( 1 + (1.00 - 1.53i)T + (-1.99 - 4.58i)T^{2} \)
7 \( 1 + (4.01 - 1.04i)T + (6.11 - 3.41i)T^{2} \)
11 \( 1 + (-2.62 - 3.76i)T + (-3.81 + 10.3i)T^{2} \)
13 \( 1 + (4.49 + 4.30i)T + (0.551 + 12.9i)T^{2} \)
17 \( 1 + (-2.79 + 0.237i)T + (16.7 - 2.87i)T^{2} \)
19 \( 1 + (2.81 - 1.68i)T + (9.03 - 16.7i)T^{2} \)
23 \( 1 + (3.27 + 0.185i)T + (22.8 + 2.59i)T^{2} \)
29 \( 1 + (-3.41 - 2.45i)T + (9.27 + 27.4i)T^{2} \)
31 \( 1 + (-6.96 + 8.38i)T + (-5.67 - 30.4i)T^{2} \)
37 \( 1 + (4.20 + 8.95i)T + (-23.6 + 28.4i)T^{2} \)
41 \( 1 + (3.71 + 9.24i)T + (-29.6 + 28.3i)T^{2} \)
43 \( 1 + (-0.772 + 0.0878i)T + (41.9 - 9.65i)T^{2} \)
47 \( 1 + (-0.721 - 0.430i)T + (22.3 + 41.3i)T^{2} \)
53 \( 1 + (-9.73 + 4.07i)T + (37.2 - 37.7i)T^{2} \)
59 \( 1 + (2.54 - 1.72i)T + (21.9 - 54.7i)T^{2} \)
61 \( 1 + (6.99 - 2.03i)T + (51.4 - 32.7i)T^{2} \)
67 \( 1 + (5.91 + 1.90i)T + (54.4 + 39.0i)T^{2} \)
71 \( 1 + (-0.222 - 3.14i)T + (-70.2 + 10.0i)T^{2} \)
73 \( 1 + (16.0 + 0.455i)T + (72.8 + 4.12i)T^{2} \)
79 \( 1 + (6.79 - 8.66i)T + (-18.8 - 76.7i)T^{2} \)
83 \( 1 + (-7.03 - 0.799i)T + (80.8 + 18.6i)T^{2} \)
89 \( 1 + (3.49 + 5.33i)T + (-35.5 + 81.6i)T^{2} \)
97 \( 1 + (-11.3 + 0.640i)T + (96.3 - 10.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22625044754160224462232112511, −9.581272120622939899053764555768, −8.835813934582242734948039136712, −7.69865629367721794628027926135, −7.02279647955758811816892233185, −5.71291460079227736734146792801, −4.01611643795932527652038366321, −3.10905782163524832296021882764, −2.33464281325195586665897654526, −0.10118733941508495472845618588, 1.11942076531717978145740515687, 3.13421434428486036100304410710, 4.56987122019830351605572587814, 6.21397315572292368641199845639, 6.54516428740903344287619683201, 7.35003550066745869447178988864, 8.420861256209297854227427315903, 8.834213260468326980434640691812, 9.752479112879149141346348627119, 10.31795447869841787146291932231

Graph of the $Z$-function along the critical line