Properties

Label 2-669-1.1-c1-0-26
Degree $2$
Conductor $669$
Sign $1$
Analytic cond. $5.34199$
Root an. cond. $2.31127$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.47·2-s + 3-s + 4.14·4-s − 1.24·5-s + 2.47·6-s − 1.48·7-s + 5.32·8-s + 9-s − 3.09·10-s + 2.18·11-s + 4.14·12-s + 4.58·13-s − 3.68·14-s − 1.24·15-s + 4.90·16-s + 2.22·17-s + 2.47·18-s − 3.59·19-s − 5.17·20-s − 1.48·21-s + 5.42·22-s − 1.04·23-s + 5.32·24-s − 3.44·25-s + 11.3·26-s + 27-s − 6.15·28-s + ⋯
L(s)  = 1  + 1.75·2-s + 0.577·3-s + 2.07·4-s − 0.558·5-s + 1.01·6-s − 0.561·7-s + 1.88·8-s + 0.333·9-s − 0.979·10-s + 0.660·11-s + 1.19·12-s + 1.27·13-s − 0.983·14-s − 0.322·15-s + 1.22·16-s + 0.539·17-s + 0.584·18-s − 0.825·19-s − 1.15·20-s − 0.323·21-s + 1.15·22-s − 0.218·23-s + 1.08·24-s − 0.688·25-s + 2.22·26-s + 0.192·27-s − 1.16·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(669\)    =    \(3 \cdot 223\)
Sign: $1$
Analytic conductor: \(5.34199\)
Root analytic conductor: \(2.31127\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 669,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.416079445\)
\(L(\frac12)\) \(\approx\) \(4.416079445\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
223 \( 1 + T \)
good2 \( 1 - 2.47T + 2T^{2} \)
5 \( 1 + 1.24T + 5T^{2} \)
7 \( 1 + 1.48T + 7T^{2} \)
11 \( 1 - 2.18T + 11T^{2} \)
13 \( 1 - 4.58T + 13T^{2} \)
17 \( 1 - 2.22T + 17T^{2} \)
19 \( 1 + 3.59T + 19T^{2} \)
23 \( 1 + 1.04T + 23T^{2} \)
29 \( 1 + 5.04T + 29T^{2} \)
31 \( 1 - 1.24T + 31T^{2} \)
37 \( 1 + 1.96T + 37T^{2} \)
41 \( 1 + 7.81T + 41T^{2} \)
43 \( 1 + 0.397T + 43T^{2} \)
47 \( 1 - 0.351T + 47T^{2} \)
53 \( 1 + 13.1T + 53T^{2} \)
59 \( 1 + 6.79T + 59T^{2} \)
61 \( 1 - 6.49T + 61T^{2} \)
67 \( 1 - 10.0T + 67T^{2} \)
71 \( 1 - 2.85T + 71T^{2} \)
73 \( 1 - 5.59T + 73T^{2} \)
79 \( 1 - 0.736T + 79T^{2} \)
83 \( 1 - 7.48T + 83T^{2} \)
89 \( 1 - 10.0T + 89T^{2} \)
97 \( 1 - 12.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.91279625923514044095389878596, −9.748115883128089288519737753335, −8.630642331867785116520319740149, −7.67222609089644360375345103507, −6.58560869601001338238359622170, −6.04588700359142001901296898692, −4.78161628518519911503301527232, −3.64463899795004228013136285256, −3.48897797028078267031600663272, −1.90719937191492144851607794074, 1.90719937191492144851607794074, 3.48897797028078267031600663272, 3.64463899795004228013136285256, 4.78161628518519911503301527232, 6.04588700359142001901296898692, 6.58560869601001338238359622170, 7.67222609089644360375345103507, 8.630642331867785116520319740149, 9.748115883128089288519737753335, 10.91279625923514044095389878596

Graph of the $Z$-function along the critical line