Properties

Label 2-669-1.1-c1-0-12
Degree $2$
Conductor $669$
Sign $-1$
Analytic cond. $5.34199$
Root an. cond. $2.31127$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.41·2-s − 3-s + 3.82·4-s − 4.41·5-s + 2.41·6-s − 0.828·7-s − 4.41·8-s + 9-s + 10.6·10-s + 0.828·11-s − 3.82·12-s + 6·13-s + 1.99·14-s + 4.41·15-s + 2.99·16-s + 5.65·17-s − 2.41·18-s − 6·19-s − 16.8·20-s + 0.828·21-s − 1.99·22-s − 1.17·23-s + 4.41·24-s + 14.4·25-s − 14.4·26-s − 27-s − 3.17·28-s + ⋯
L(s)  = 1  − 1.70·2-s − 0.577·3-s + 1.91·4-s − 1.97·5-s + 0.985·6-s − 0.313·7-s − 1.56·8-s + 0.333·9-s + 3.36·10-s + 0.249·11-s − 1.10·12-s + 1.66·13-s + 0.534·14-s + 1.13·15-s + 0.749·16-s + 1.37·17-s − 0.569·18-s − 1.37·19-s − 3.77·20-s + 0.180·21-s − 0.426·22-s − 0.244·23-s + 0.901·24-s + 2.89·25-s − 2.84·26-s − 0.192·27-s − 0.599·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(669\)    =    \(3 \cdot 223\)
Sign: $-1$
Analytic conductor: \(5.34199\)
Root analytic conductor: \(2.31127\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 669,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
223 \( 1 + T \)
good2 \( 1 + 2.41T + 2T^{2} \)
5 \( 1 + 4.41T + 5T^{2} \)
7 \( 1 + 0.828T + 7T^{2} \)
11 \( 1 - 0.828T + 11T^{2} \)
13 \( 1 - 6T + 13T^{2} \)
17 \( 1 - 5.65T + 17T^{2} \)
19 \( 1 + 6T + 19T^{2} \)
23 \( 1 + 1.17T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 5T + 37T^{2} \)
41 \( 1 + 2.82T + 41T^{2} \)
43 \( 1 - 3.65T + 43T^{2} \)
47 \( 1 - 10.4T + 47T^{2} \)
53 \( 1 + 5.17T + 53T^{2} \)
59 \( 1 + 2.82T + 59T^{2} \)
61 \( 1 - 8.48T + 61T^{2} \)
67 \( 1 + 12.6T + 67T^{2} \)
71 \( 1 + 6.82T + 71T^{2} \)
73 \( 1 + 3T + 73T^{2} \)
79 \( 1 + 9.48T + 79T^{2} \)
83 \( 1 + 8.89T + 83T^{2} \)
89 \( 1 + 7.31T + 89T^{2} \)
97 \( 1 + 5.17T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26101925336469903482717157532, −8.919574049056499123740364258834, −8.435323563057599259836859108174, −7.64606888432396291478797740471, −6.93662546972391500674019140369, −5.98251841523934946770834864207, −4.24662966285771311545591829551, −3.33909708714776672966603025857, −1.24627254262589795169697797038, 0, 1.24627254262589795169697797038, 3.33909708714776672966603025857, 4.24662966285771311545591829551, 5.98251841523934946770834864207, 6.93662546972391500674019140369, 7.64606888432396291478797740471, 8.435323563057599259836859108174, 8.919574049056499123740364258834, 10.26101925336469903482717157532

Graph of the $Z$-function along the critical line