Properties

Label 2-6660-5.4-c1-0-73
Degree $2$
Conductor $6660$
Sign $-0.744 + 0.667i$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.49 − 1.66i)5-s − 0.712i·7-s − 2.90·11-s − 6.88i·13-s + 0.433i·17-s + 7.42·19-s − 5.73i·23-s + (−0.545 + 4.97i)25-s + 10.5·29-s + 0.00620·31-s + (−1.18 + 1.06i)35-s + i·37-s + 3.79·41-s − 4.77i·43-s − 3.37i·47-s + ⋯
L(s)  = 1  + (−0.667 − 0.744i)5-s − 0.269i·7-s − 0.875·11-s − 1.91i·13-s + 0.105i·17-s + 1.70·19-s − 1.19i·23-s + (−0.109 + 0.994i)25-s + 1.96·29-s + 0.00111·31-s + (−0.200 + 0.179i)35-s + 0.164i·37-s + 0.593·41-s − 0.727i·43-s − 0.492i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.744 + 0.667i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.744 + 0.667i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $-0.744 + 0.667i$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6660} (5329, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ -0.744 + 0.667i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.438481809\)
\(L(\frac12)\) \(\approx\) \(1.438481809\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.49 + 1.66i)T \)
37 \( 1 - iT \)
good7 \( 1 + 0.712iT - 7T^{2} \)
11 \( 1 + 2.90T + 11T^{2} \)
13 \( 1 + 6.88iT - 13T^{2} \)
17 \( 1 - 0.433iT - 17T^{2} \)
19 \( 1 - 7.42T + 19T^{2} \)
23 \( 1 + 5.73iT - 23T^{2} \)
29 \( 1 - 10.5T + 29T^{2} \)
31 \( 1 - 0.00620T + 31T^{2} \)
41 \( 1 - 3.79T + 41T^{2} \)
43 \( 1 + 4.77iT - 43T^{2} \)
47 \( 1 + 3.37iT - 47T^{2} \)
53 \( 1 + 0.266iT - 53T^{2} \)
59 \( 1 + 4.17T + 59T^{2} \)
61 \( 1 + 6.75T + 61T^{2} \)
67 \( 1 - 11.4iT - 67T^{2} \)
71 \( 1 - 12.9T + 71T^{2} \)
73 \( 1 + 11.1iT - 73T^{2} \)
79 \( 1 - 4.76T + 79T^{2} \)
83 \( 1 + 1.61iT - 83T^{2} \)
89 \( 1 - 7.65T + 89T^{2} \)
97 \( 1 + 1.08iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79748507519299552331391214848, −7.29131716580287837505176346722, −6.25556061044451111520048847748, −5.30169518066675919081966832052, −5.06786734389432093285985929184, −4.12467105931197981375596456242, −3.18917916204440896141874319303, −2.65084509611681363183268740332, −1.05323234861986662855219559691, −0.45380491288601853889267212810, 1.16291393937371021977356421746, 2.36814404228546786634236733831, 3.03537013820517196158351813171, 3.86228137041078504287404560679, 4.66440754736820740579586046743, 5.35800532920640520613210584567, 6.34639489426310357370293593980, 6.85176476676938703773037193401, 7.66095230459223294596821101214, 7.966423453947314613942025065530

Graph of the $Z$-function along the critical line