Properties

Label 2-6660-1.1-c1-0-53
Degree $2$
Conductor $6660$
Sign $-1$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 7-s + 1.61·11-s + 13-s − 5.85·17-s − 2.61·19-s + 2.23·23-s + 25-s − 5.85·29-s + 1.47·31-s − 35-s + 37-s + 8.70·41-s − 3.85·43-s + 8.70·47-s − 6·49-s − 1.52·53-s + 1.61·55-s − 9.79·59-s − 5.76·61-s + 65-s − 7.09·67-s − 0.326·71-s + 3.32·73-s − 1.61·77-s − 15.3·79-s − 11.7·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.377·7-s + 0.487·11-s + 0.277·13-s − 1.41·17-s − 0.600·19-s + 0.466·23-s + 0.200·25-s − 1.08·29-s + 0.264·31-s − 0.169·35-s + 0.164·37-s + 1.35·41-s − 0.587·43-s + 1.27·47-s − 0.857·49-s − 0.209·53-s + 0.218·55-s − 1.27·59-s − 0.737·61-s + 0.124·65-s − 0.866·67-s − 0.0387·71-s + 0.389·73-s − 0.184·77-s − 1.72·79-s − 1.29·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
37 \( 1 - T \)
good7 \( 1 + T + 7T^{2} \)
11 \( 1 - 1.61T + 11T^{2} \)
13 \( 1 - T + 13T^{2} \)
17 \( 1 + 5.85T + 17T^{2} \)
19 \( 1 + 2.61T + 19T^{2} \)
23 \( 1 - 2.23T + 23T^{2} \)
29 \( 1 + 5.85T + 29T^{2} \)
31 \( 1 - 1.47T + 31T^{2} \)
41 \( 1 - 8.70T + 41T^{2} \)
43 \( 1 + 3.85T + 43T^{2} \)
47 \( 1 - 8.70T + 47T^{2} \)
53 \( 1 + 1.52T + 53T^{2} \)
59 \( 1 + 9.79T + 59T^{2} \)
61 \( 1 + 5.76T + 61T^{2} \)
67 \( 1 + 7.09T + 67T^{2} \)
71 \( 1 + 0.326T + 71T^{2} \)
73 \( 1 - 3.32T + 73T^{2} \)
79 \( 1 + 15.3T + 79T^{2} \)
83 \( 1 + 11.7T + 83T^{2} \)
89 \( 1 - 12.4T + 89T^{2} \)
97 \( 1 + 3.29T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.54788168966767605439243214037, −6.84841127448562744907726267903, −6.23558091986290589522349850621, −5.69868048231767154775982940077, −4.63036991325954210208499718029, −4.11305221907826381310759494866, −3.11437451706073462538376281723, −2.28366401027228059680996732698, −1.38190048355444808798250315201, 0, 1.38190048355444808798250315201, 2.28366401027228059680996732698, 3.11437451706073462538376281723, 4.11305221907826381310759494866, 4.63036991325954210208499718029, 5.69868048231767154775982940077, 6.23558091986290589522349850621, 6.84841127448562744907726267903, 7.54788168966767605439243214037

Graph of the $Z$-function along the critical line