Properties

Label 2-6660-1.1-c1-0-42
Degree $2$
Conductor $6660$
Sign $-1$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 0.335·7-s − 1.19·11-s + 3.77·13-s + 4.01·17-s − 4.01·19-s − 6.81·23-s + 25-s − 1.90·29-s + 7.48·31-s + 0.335·35-s − 37-s − 11.9·41-s + 2.09·43-s − 0.495·47-s − 6.88·49-s + 1.71·53-s + 1.19·55-s + 8.06·59-s − 5.21·61-s − 3.77·65-s + 6.68·67-s − 0.254·71-s − 8.16·73-s + 0.402·77-s + 17.0·79-s − 6.03·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.126·7-s − 0.361·11-s + 1.04·13-s + 0.974·17-s − 0.921·19-s − 1.42·23-s + 0.200·25-s − 0.353·29-s + 1.34·31-s + 0.0566·35-s − 0.164·37-s − 1.86·41-s + 0.319·43-s − 0.0723·47-s − 0.983·49-s + 0.235·53-s + 0.161·55-s + 1.05·59-s − 0.667·61-s − 0.468·65-s + 0.817·67-s − 0.0301·71-s − 0.955·73-s + 0.0458·77-s + 1.91·79-s − 0.661·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
37 \( 1 + T \)
good7 \( 1 + 0.335T + 7T^{2} \)
11 \( 1 + 1.19T + 11T^{2} \)
13 \( 1 - 3.77T + 13T^{2} \)
17 \( 1 - 4.01T + 17T^{2} \)
19 \( 1 + 4.01T + 19T^{2} \)
23 \( 1 + 6.81T + 23T^{2} \)
29 \( 1 + 1.90T + 29T^{2} \)
31 \( 1 - 7.48T + 31T^{2} \)
41 \( 1 + 11.9T + 41T^{2} \)
43 \( 1 - 2.09T + 43T^{2} \)
47 \( 1 + 0.495T + 47T^{2} \)
53 \( 1 - 1.71T + 53T^{2} \)
59 \( 1 - 8.06T + 59T^{2} \)
61 \( 1 + 5.21T + 61T^{2} \)
67 \( 1 - 6.68T + 67T^{2} \)
71 \( 1 + 0.254T + 71T^{2} \)
73 \( 1 + 8.16T + 73T^{2} \)
79 \( 1 - 17.0T + 79T^{2} \)
83 \( 1 + 6.03T + 83T^{2} \)
89 \( 1 - 1.37T + 89T^{2} \)
97 \( 1 - 10.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.916729815967228238013266395722, −6.84292122986857228079790279750, −6.27957532103197426516195580191, −5.57512108988209610010815164772, −4.72696153881583933403138893617, −3.88001760134216041314127893965, −3.34748477917802424136856471130, −2.29464008246686050305879212392, −1.26792086399335809550755045083, 0, 1.26792086399335809550755045083, 2.29464008246686050305879212392, 3.34748477917802424136856471130, 3.88001760134216041314127893965, 4.72696153881583933403138893617, 5.57512108988209610010815164772, 6.27957532103197426516195580191, 6.84292122986857228079790279750, 7.916729815967228238013266395722

Graph of the $Z$-function along the critical line