Properties

Label 2-6660-1.1-c1-0-40
Degree $2$
Conductor $6660$
Sign $-1$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3.60·7-s − 1.69·11-s − 13-s + 1.30·17-s + 5.90·19-s + 3·23-s + 25-s − 7.30·29-s + 2.39·31-s − 3.60·35-s + 37-s − 3·41-s − 0.0916·43-s − 0.394·47-s + 5.99·49-s − 1.69·55-s − 9.51·59-s + 4.21·61-s − 65-s + 14.5·67-s − 1.30·71-s − 7.51·73-s + 6.11·77-s + 2.90·79-s − 1.69·83-s + 1.30·85-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.36·7-s − 0.511·11-s − 0.277·13-s + 0.315·17-s + 1.35·19-s + 0.625·23-s + 0.200·25-s − 1.35·29-s + 0.430·31-s − 0.609·35-s + 0.164·37-s − 0.468·41-s − 0.0139·43-s − 0.0575·47-s + 0.857·49-s − 0.228·55-s − 1.23·59-s + 0.539·61-s − 0.124·65-s + 1.77·67-s − 0.154·71-s − 0.879·73-s + 0.697·77-s + 0.327·79-s − 0.186·83-s + 0.141·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
37 \( 1 - T \)
good7 \( 1 + 3.60T + 7T^{2} \)
11 \( 1 + 1.69T + 11T^{2} \)
13 \( 1 + T + 13T^{2} \)
17 \( 1 - 1.30T + 17T^{2} \)
19 \( 1 - 5.90T + 19T^{2} \)
23 \( 1 - 3T + 23T^{2} \)
29 \( 1 + 7.30T + 29T^{2} \)
31 \( 1 - 2.39T + 31T^{2} \)
41 \( 1 + 3T + 41T^{2} \)
43 \( 1 + 0.0916T + 43T^{2} \)
47 \( 1 + 0.394T + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 9.51T + 59T^{2} \)
61 \( 1 - 4.21T + 61T^{2} \)
67 \( 1 - 14.5T + 67T^{2} \)
71 \( 1 + 1.30T + 71T^{2} \)
73 \( 1 + 7.51T + 73T^{2} \)
79 \( 1 - 2.90T + 79T^{2} \)
83 \( 1 + 1.69T + 83T^{2} \)
89 \( 1 + 9T + 89T^{2} \)
97 \( 1 - 1.60T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48712597815630369338010932878, −6.97715140747732091254888076982, −6.21259913193366900166703547021, −5.53276307788816685894213813648, −4.97177123663655742510742202726, −3.79736760262708240259401470599, −3.13577849875615004609689782273, −2.47948347419050031699091255548, −1.24176025117242012591182596277, 0, 1.24176025117242012591182596277, 2.47948347419050031699091255548, 3.13577849875615004609689782273, 3.79736760262708240259401470599, 4.97177123663655742510742202726, 5.53276307788816685894213813648, 6.21259913193366900166703547021, 6.97715140747732091254888076982, 7.48712597815630369338010932878

Graph of the $Z$-function along the critical line