Properties

Label 2-6660-1.1-c1-0-20
Degree $2$
Conductor $6660$
Sign $1$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2.13·7-s + 1.52·11-s − 3.42·13-s + 2.08·17-s + 7.10·19-s + 6.73·23-s + 25-s + 3.83·29-s − 5.67·31-s − 2.13·35-s − 37-s + 0.0328·41-s + 2.26·43-s + 3.10·47-s − 2.44·49-s − 11.6·53-s − 1.52·55-s + 10.6·59-s − 11.4·61-s + 3.42·65-s − 3.95·67-s + 1.66·71-s + 7.60·73-s + 3.25·77-s − 7.30·79-s + 12.2·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.806·7-s + 0.460·11-s − 0.951·13-s + 0.505·17-s + 1.63·19-s + 1.40·23-s + 0.200·25-s + 0.712·29-s − 1.01·31-s − 0.360·35-s − 0.164·37-s + 0.00513·41-s + 0.345·43-s + 0.452·47-s − 0.349·49-s − 1.59·53-s − 0.205·55-s + 1.38·59-s − 1.47·61-s + 0.425·65-s − 0.482·67-s + 0.197·71-s + 0.889·73-s + 0.371·77-s − 0.821·79-s + 1.34·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.192894164\)
\(L(\frac12)\) \(\approx\) \(2.192894164\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
37 \( 1 + T \)
good7 \( 1 - 2.13T + 7T^{2} \)
11 \( 1 - 1.52T + 11T^{2} \)
13 \( 1 + 3.42T + 13T^{2} \)
17 \( 1 - 2.08T + 17T^{2} \)
19 \( 1 - 7.10T + 19T^{2} \)
23 \( 1 - 6.73T + 23T^{2} \)
29 \( 1 - 3.83T + 29T^{2} \)
31 \( 1 + 5.67T + 31T^{2} \)
41 \( 1 - 0.0328T + 41T^{2} \)
43 \( 1 - 2.26T + 43T^{2} \)
47 \( 1 - 3.10T + 47T^{2} \)
53 \( 1 + 11.6T + 53T^{2} \)
59 \( 1 - 10.6T + 59T^{2} \)
61 \( 1 + 11.4T + 61T^{2} \)
67 \( 1 + 3.95T + 67T^{2} \)
71 \( 1 - 1.66T + 71T^{2} \)
73 \( 1 - 7.60T + 73T^{2} \)
79 \( 1 + 7.30T + 79T^{2} \)
83 \( 1 - 12.2T + 83T^{2} \)
89 \( 1 + 9.08T + 89T^{2} \)
97 \( 1 + 6.76T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82098093028301072223322812816, −7.39546375164778094654576516542, −6.80349226744687564912534823620, −5.72368439923866862963170442634, −5.03013587163120395172448067677, −4.57652490156093888241598962579, −3.49356651609409531636791081603, −2.88628939781221405680687186011, −1.69914417260477253635701151949, −0.802681604587713076730340066787, 0.802681604587713076730340066787, 1.69914417260477253635701151949, 2.88628939781221405680687186011, 3.49356651609409531636791081603, 4.57652490156093888241598962579, 5.03013587163120395172448067677, 5.72368439923866862963170442634, 6.80349226744687564912534823620, 7.39546375164778094654576516542, 7.82098093028301072223322812816

Graph of the $Z$-function along the critical line