Properties

Label 2-6660-1.1-c1-0-11
Degree $2$
Conductor $6660$
Sign $1$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 0.454·7-s − 2.12·11-s − 4.88·13-s + 7.66·17-s − 0.330·19-s − 9.13·23-s + 25-s + 8.57·29-s − 1.54·31-s − 0.454·35-s − 37-s + 12.2·41-s − 4.57·43-s − 3.79·47-s − 6.79·49-s − 2.90·53-s − 2.12·55-s + 8.12·59-s + 10.7·61-s − 4.88·65-s + 3.84·67-s + 13.2·71-s + 4.12·73-s + 0.966·77-s − 9.94·79-s − 8.55·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.171·7-s − 0.640·11-s − 1.35·13-s + 1.86·17-s − 0.0759·19-s − 1.90·23-s + 0.200·25-s + 1.59·29-s − 0.277·31-s − 0.0768·35-s − 0.164·37-s + 1.90·41-s − 0.698·43-s − 0.553·47-s − 0.970·49-s − 0.399·53-s − 0.286·55-s + 1.05·59-s + 1.37·61-s − 0.605·65-s + 0.470·67-s + 1.57·71-s + 0.482·73-s + 0.110·77-s − 1.11·79-s − 0.938·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.779354250\)
\(L(\frac12)\) \(\approx\) \(1.779354250\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
37 \( 1 + T \)
good7 \( 1 + 0.454T + 7T^{2} \)
11 \( 1 + 2.12T + 11T^{2} \)
13 \( 1 + 4.88T + 13T^{2} \)
17 \( 1 - 7.66T + 17T^{2} \)
19 \( 1 + 0.330T + 19T^{2} \)
23 \( 1 + 9.13T + 23T^{2} \)
29 \( 1 - 8.57T + 29T^{2} \)
31 \( 1 + 1.54T + 31T^{2} \)
41 \( 1 - 12.2T + 41T^{2} \)
43 \( 1 + 4.57T + 43T^{2} \)
47 \( 1 + 3.79T + 47T^{2} \)
53 \( 1 + 2.90T + 53T^{2} \)
59 \( 1 - 8.12T + 59T^{2} \)
61 \( 1 - 10.7T + 61T^{2} \)
67 \( 1 - 3.84T + 67T^{2} \)
71 \( 1 - 13.2T + 71T^{2} \)
73 \( 1 - 4.12T + 73T^{2} \)
79 \( 1 + 9.94T + 79T^{2} \)
83 \( 1 + 8.55T + 83T^{2} \)
89 \( 1 + 4.22T + 89T^{2} \)
97 \( 1 - 5.13T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.959844375327725641876934250642, −7.40087330966937627518343558872, −6.54913528606288728279463184738, −5.79487269740754251313017962802, −5.23544607595406626197601844370, −4.49420510856595049682830332493, −3.49557356938706911158822885513, −2.68464232716354433496291146215, −1.95021264637253502943304211355, −0.67025161489581197336871275564, 0.67025161489581197336871275564, 1.95021264637253502943304211355, 2.68464232716354433496291146215, 3.49557356938706911158822885513, 4.49420510856595049682830332493, 5.23544607595406626197601844370, 5.79487269740754251313017962802, 6.54913528606288728279463184738, 7.40087330966937627518343558872, 7.959844375327725641876934250642

Graph of the $Z$-function along the critical line