L(s) = 1 | + (0.0871 − 0.996i)2-s + (−0.984 − 0.173i)4-s + (3.66 + 1.70i)5-s + (−0.294 + 0.107i)7-s + (−0.258 + 0.965i)8-s + (2.02 − 3.49i)10-s + (−0.875 − 1.51i)11-s + (1.84 + 2.64i)13-s + (0.0811 + 0.302i)14-s + (0.939 + 0.342i)16-s + (−0.590 + 0.843i)17-s + (5.81 − 0.508i)19-s + (−3.31 − 2.31i)20-s + (−1.58 + 0.740i)22-s + (−2.42 + 0.648i)23-s + ⋯ |
L(s) = 1 | + (0.0616 − 0.704i)2-s + (−0.492 − 0.0868i)4-s + (1.63 + 0.763i)5-s + (−0.111 + 0.0405i)7-s + (−0.0915 + 0.341i)8-s + (0.638 − 1.10i)10-s + (−0.264 − 0.457i)11-s + (0.513 + 0.732i)13-s + (0.0216 + 0.0809i)14-s + (0.234 + 0.0855i)16-s + (−0.143 + 0.204i)17-s + (1.33 − 0.116i)19-s + (−0.740 − 0.518i)20-s + (−0.338 + 0.157i)22-s + (−0.504 + 0.135i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(0.945+0.325i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(0.945+0.325i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
0.945+0.325i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(557,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), 0.945+0.325i)
|
Particular Values
L(1) |
≈ |
1.91028−0.319198i |
L(21) |
≈ |
1.91028−0.319198i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0871+0.996i)T |
| 3 | 1 |
| 37 | 1+(−5.99−1.00i)T |
good | 5 | 1+(−3.66−1.70i)T+(3.21+3.83i)T2 |
| 7 | 1+(0.294−0.107i)T+(5.36−4.49i)T2 |
| 11 | 1+(0.875+1.51i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−1.84−2.64i)T+(−4.44+12.2i)T2 |
| 17 | 1+(0.590−0.843i)T+(−5.81−15.9i)T2 |
| 19 | 1+(−5.81+0.508i)T+(18.7−3.29i)T2 |
| 23 | 1+(2.42−0.648i)T+(19.9−11.5i)T2 |
| 29 | 1+(2.34+0.627i)T+(25.1+14.5i)T2 |
| 31 | 1+(−0.925−0.925i)T+31iT2 |
| 41 | 1+(0.370−2.10i)T+(−38.5−14.0i)T2 |
| 43 | 1+(−4.14+4.14i)T−43iT2 |
| 47 | 1+(3.98+2.30i)T+(23.5+40.7i)T2 |
| 53 | 1+(−2.72+7.48i)T+(−40.6−34.0i)T2 |
| 59 | 1+(−0.432−0.927i)T+(−37.9+45.1i)T2 |
| 61 | 1+(−0.131+0.0918i)T+(20.8−57.3i)T2 |
| 67 | 1+(5.46+15.0i)T+(−51.3+43.0i)T2 |
| 71 | 1+(−8.74+10.4i)T+(−12.3−69.9i)T2 |
| 73 | 1+11.4iT−73T2 |
| 79 | 1+(0.448−0.961i)T+(−50.7−60.5i)T2 |
| 83 | 1+(8.03−1.41i)T+(77.9−28.3i)T2 |
| 89 | 1+(12.5−5.83i)T+(57.2−68.1i)T2 |
| 97 | 1+(−2.88−10.7i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52861349585138574679972394284, −9.566002937071762653266844124365, −9.279011333650659693398988153736, −7.956447663714018731860695509410, −6.66352434832245651120043701783, −5.95501640801334908573898821047, −5.07864224496056635922513385605, −3.56908696470741018849220506016, −2.57881610943576905509543523093, −1.53181894685241278159644444123,
1.24205680955113296409147287192, 2.73722681809699600113287617813, 4.36444808895101140052488508934, 5.49090326963033227062148009673, 5.79005995583173582093174098035, 6.92616976337739829697409956759, 7.979009846103988372610681730728, 8.863363377302984057856078577566, 9.740724222956699664857860831565, 10.06854168384367342076736374213