L(s) = 1 | + (0.0871 − 0.996i)2-s + (−0.984 − 0.173i)4-s + (0.0741 + 0.0345i)5-s + (−1.92 + 0.700i)7-s + (−0.258 + 0.965i)8-s + (0.0408 − 0.0708i)10-s + (−0.0467 − 0.0809i)11-s + (−3.00 − 4.29i)13-s + (0.530 + 1.97i)14-s + (0.939 + 0.342i)16-s + (2.94 − 4.21i)17-s + (−7.61 + 0.666i)19-s + (−0.0669 − 0.0468i)20-s + (−0.0847 + 0.0395i)22-s + (−6.72 + 1.80i)23-s + ⋯ |
L(s) = 1 | + (0.0616 − 0.704i)2-s + (−0.492 − 0.0868i)4-s + (0.0331 + 0.0154i)5-s + (−0.727 + 0.264i)7-s + (−0.0915 + 0.341i)8-s + (0.0129 − 0.0223i)10-s + (−0.0140 − 0.0244i)11-s + (−0.833 − 1.19i)13-s + (0.141 + 0.529i)14-s + (0.234 + 0.0855i)16-s + (0.715 − 1.02i)17-s + (−1.74 + 0.152i)19-s + (−0.0149 − 0.0104i)20-s + (−0.0180 + 0.00842i)22-s + (−1.40 + 0.375i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(−0.982−0.187i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(−0.982−0.187i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
−0.982−0.187i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(557,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), −0.982−0.187i)
|
Particular Values
L(1) |
≈ |
0.0443399+0.468175i |
L(21) |
≈ |
0.0443399+0.468175i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0871+0.996i)T |
| 3 | 1 |
| 37 | 1+(6.08+0.146i)T |
good | 5 | 1+(−0.0741−0.0345i)T+(3.21+3.83i)T2 |
| 7 | 1+(1.92−0.700i)T+(5.36−4.49i)T2 |
| 11 | 1+(0.0467+0.0809i)T+(−5.5+9.52i)T2 |
| 13 | 1+(3.00+4.29i)T+(−4.44+12.2i)T2 |
| 17 | 1+(−2.94+4.21i)T+(−5.81−15.9i)T2 |
| 19 | 1+(7.61−0.666i)T+(18.7−3.29i)T2 |
| 23 | 1+(6.72−1.80i)T+(19.9−11.5i)T2 |
| 29 | 1+(−3.03−0.813i)T+(25.1+14.5i)T2 |
| 31 | 1+(0.356+0.356i)T+31iT2 |
| 41 | 1+(0.847−4.80i)T+(−38.5−14.0i)T2 |
| 43 | 1+(−5.17+5.17i)T−43iT2 |
| 47 | 1+(−7.78−4.49i)T+(23.5+40.7i)T2 |
| 53 | 1+(−2.03+5.57i)T+(−40.6−34.0i)T2 |
| 59 | 1+(3.74+8.02i)T+(−37.9+45.1i)T2 |
| 61 | 1+(4.71−3.30i)T+(20.8−57.3i)T2 |
| 67 | 1+(−1.89−5.19i)T+(−51.3+43.0i)T2 |
| 71 | 1+(6.74−8.03i)T+(−12.3−69.9i)T2 |
| 73 | 1+4.72iT−73T2 |
| 79 | 1+(−5.96+12.7i)T+(−50.7−60.5i)T2 |
| 83 | 1+(−11.2+1.97i)T+(77.9−28.3i)T2 |
| 89 | 1+(5.09−2.37i)T+(57.2−68.1i)T2 |
| 97 | 1+(−0.309−1.15i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12892299800449118351099529290, −9.480164935579498637010334511778, −8.405296672283928636469841890573, −7.58481135663173512934574084062, −6.30714915368743356450811219461, −5.46167355843715384840458740520, −4.31549532993641149289436657835, −3.16488043863363606928252086946, −2.22707358254215702149217997133, −0.22964306331364436031938028571,
2.08351206386321628159675042440, 3.75329692724989981046601765795, 4.48004757456554392187967698463, 5.83867581768252846693972360491, 6.50932158918030155536158323569, 7.35671057682421965028574225570, 8.321395001504077670681811988523, 9.177956126990232658955507237817, 10.02365645956319350730931726252, 10.72209254345196358494252260814