L(s) = 1 | + (0.0871 − 0.996i)2-s + (−0.984 − 0.173i)4-s + (−3.03 − 1.41i)5-s + (−1.63 + 0.593i)7-s + (−0.258 + 0.965i)8-s + (−1.67 + 2.90i)10-s + (0.408 + 0.708i)11-s + (3.82 + 5.46i)13-s + (0.449 + 1.67i)14-s + (0.939 + 0.342i)16-s + (−0.771 + 1.10i)17-s + (−1.63 + 0.143i)19-s + (2.74 + 1.92i)20-s + (0.741 − 0.345i)22-s + (4.85 − 1.30i)23-s + ⋯ |
L(s) = 1 | + (0.0616 − 0.704i)2-s + (−0.492 − 0.0868i)4-s + (−1.35 − 0.633i)5-s + (−0.616 + 0.224i)7-s + (−0.0915 + 0.341i)8-s + (−0.529 + 0.917i)10-s + (0.123 + 0.213i)11-s + (1.06 + 1.51i)13-s + (0.120 + 0.447i)14-s + (0.234 + 0.0855i)16-s + (−0.187 + 0.267i)17-s + (−0.375 + 0.0328i)19-s + (0.613 + 0.429i)20-s + (0.158 − 0.0736i)22-s + (1.01 − 0.271i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.793 - 0.609i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.793 - 0.609i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.692346 + 0.235240i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.692346 + 0.235240i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.0871 + 0.996i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-4.15 + 4.44i)T \) |
good | 5 | \( 1 + (3.03 + 1.41i)T + (3.21 + 3.83i)T^{2} \) |
| 7 | \( 1 + (1.63 - 0.593i)T + (5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (-0.408 - 0.708i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.82 - 5.46i)T + (-4.44 + 12.2i)T^{2} \) |
| 17 | \( 1 + (0.771 - 1.10i)T + (-5.81 - 15.9i)T^{2} \) |
| 19 | \( 1 + (1.63 - 0.143i)T + (18.7 - 3.29i)T^{2} \) |
| 23 | \( 1 + (-4.85 + 1.30i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (3.12 + 0.836i)T + (25.1 + 14.5i)T^{2} \) |
| 31 | \( 1 + (-5.52 - 5.52i)T + 31iT^{2} \) |
| 41 | \( 1 + (0.631 - 3.58i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (7.38 - 7.38i)T - 43iT^{2} \) |
| 47 | \( 1 + (2.69 + 1.55i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.64 - 4.52i)T + (-40.6 - 34.0i)T^{2} \) |
| 59 | \( 1 + (-3.21 - 6.88i)T + (-37.9 + 45.1i)T^{2} \) |
| 61 | \( 1 + (9.61 - 6.73i)T + (20.8 - 57.3i)T^{2} \) |
| 67 | \( 1 + (-1.99 - 5.49i)T + (-51.3 + 43.0i)T^{2} \) |
| 71 | \( 1 + (7.41 - 8.83i)T + (-12.3 - 69.9i)T^{2} \) |
| 73 | \( 1 - 6.79iT - 73T^{2} \) |
| 79 | \( 1 + (-3.68 + 7.89i)T + (-50.7 - 60.5i)T^{2} \) |
| 83 | \( 1 + (-8.80 + 1.55i)T + (77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (4.08 - 1.90i)T + (57.2 - 68.1i)T^{2} \) |
| 97 | \( 1 + (2.31 + 8.63i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89907079499436518003660856464, −9.669646127144300892904142293545, −8.847580127483380161942492587755, −8.348726023114897360418677680308, −7.10285527230391148202890227951, −6.15884312984330382919257187675, −4.63203312481063445882096467510, −4.10456004055660333727060006002, −3.05007891741258367612622883405, −1.34685332882723795604818224346,
0.43049277759133843827155740965, 3.18422521082688788867308286986, 3.68454885456507905286486386586, 4.95890576675275804469076101246, 6.18283122525973951605841583670, 6.88136915696703809660136602134, 7.86177788437599141743705070693, 8.311175144417039071428391503374, 9.459690649792886892853163294730, 10.55654072460096924278946238585