Properties

Label 2-666-111.17-c1-0-8
Degree 22
Conductor 666666
Sign 0.9970.0714i0.997 - 0.0714i
Analytic cond. 5.318035.31803
Root an. cond. 2.306082.30608
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.573 + 0.819i)2-s + (−0.342 − 0.939i)4-s + (3.66 − 0.320i)5-s + (−1.19 − 0.999i)7-s + (0.965 + 0.258i)8-s + (−1.83 + 3.18i)10-s + (−1.53 − 2.65i)11-s + (4.68 + 2.18i)13-s + (1.50 − 0.402i)14-s + (−0.766 + 0.642i)16-s + (3.89 − 1.81i)17-s + (−3.65 + 2.55i)19-s + (−1.55 − 3.33i)20-s + (3.05 + 0.267i)22-s + (−1.44 − 5.38i)23-s + ⋯
L(s)  = 1  + (−0.405 + 0.579i)2-s + (−0.171 − 0.469i)4-s + (1.63 − 0.143i)5-s + (−0.450 − 0.377i)7-s + (0.341 + 0.0915i)8-s + (−0.581 + 1.00i)10-s + (−0.462 − 0.801i)11-s + (1.29 + 0.605i)13-s + (0.401 − 0.107i)14-s + (−0.191 + 0.160i)16-s + (0.945 − 0.440i)17-s + (−0.837 + 0.586i)19-s + (−0.347 − 0.744i)20-s + (0.651 + 0.0570i)22-s + (−0.300 − 1.12i)23-s + ⋯

Functional equation

Λ(s)=(666s/2ΓC(s)L(s)=((0.9970.0714i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0714i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(666s/2ΓC(s+1/2)L(s)=((0.9970.0714i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0714i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 666666    =    232372 \cdot 3^{2} \cdot 37
Sign: 0.9970.0714i0.997 - 0.0714i
Analytic conductor: 5.318035.31803
Root analytic conductor: 2.306082.30608
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ666(17,)\chi_{666} (17, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 666, ( :1/2), 0.9970.0714i)(2,\ 666,\ (\ :1/2),\ 0.997 - 0.0714i)

Particular Values

L(1)L(1) \approx 1.55292+0.0555605i1.55292 + 0.0555605i
L(12)L(\frac12) \approx 1.55292+0.0555605i1.55292 + 0.0555605i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5730.819i)T 1 + (0.573 - 0.819i)T
3 1 1
37 1+(5.103.31i)T 1 + (5.10 - 3.31i)T
good5 1+(3.66+0.320i)T+(4.920.868i)T2 1 + (-3.66 + 0.320i)T + (4.92 - 0.868i)T^{2}
7 1+(1.19+0.999i)T+(1.21+6.89i)T2 1 + (1.19 + 0.999i)T + (1.21 + 6.89i)T^{2}
11 1+(1.53+2.65i)T+(5.5+9.52i)T2 1 + (1.53 + 2.65i)T + (-5.5 + 9.52i)T^{2}
13 1+(4.682.18i)T+(8.35+9.95i)T2 1 + (-4.68 - 2.18i)T + (8.35 + 9.95i)T^{2}
17 1+(3.89+1.81i)T+(10.913.0i)T2 1 + (-3.89 + 1.81i)T + (10.9 - 13.0i)T^{2}
19 1+(3.652.55i)T+(6.4917.8i)T2 1 + (3.65 - 2.55i)T + (6.49 - 17.8i)T^{2}
23 1+(1.44+5.38i)T+(19.9+11.5i)T2 1 + (1.44 + 5.38i)T + (-19.9 + 11.5i)T^{2}
29 1+(1.43+5.35i)T+(25.114.5i)T2 1 + (-1.43 + 5.35i)T + (-25.1 - 14.5i)T^{2}
31 1+(0.808+0.808i)T31iT2 1 + (-0.808 + 0.808i)T - 31iT^{2}
41 1+(4.40+1.60i)T+(31.426.3i)T2 1 + (-4.40 + 1.60i)T + (31.4 - 26.3i)T^{2}
43 1+(2.812.81i)T+43iT2 1 + (-2.81 - 2.81i)T + 43iT^{2}
47 1+(6.673.85i)T+(23.5+40.7i)T2 1 + (-6.67 - 3.85i)T + (23.5 + 40.7i)T^{2}
53 1+(1.782.12i)T+(9.20+52.1i)T2 1 + (-1.78 - 2.12i)T + (-9.20 + 52.1i)T^{2}
59 1+(0.92910.6i)T+(58.110.2i)T2 1 + (0.929 - 10.6i)T + (-58.1 - 10.2i)T^{2}
61 1+(2.735.86i)T+(39.246.7i)T2 1 + (2.73 - 5.86i)T + (-39.2 - 46.7i)T^{2}
67 1+(6.26+7.46i)T+(11.665.9i)T2 1 + (-6.26 + 7.46i)T + (-11.6 - 65.9i)T^{2}
71 1+(11.11.96i)T+(66.7+24.2i)T2 1 + (-11.1 - 1.96i)T + (66.7 + 24.2i)T^{2}
73 12.09iT73T2 1 - 2.09iT - 73T^{2}
79 1+(1.2113.8i)T+(77.7+13.7i)T2 1 + (-1.21 - 13.8i)T + (-77.7 + 13.7i)T^{2}
83 1+(2.26+6.23i)T+(63.553.3i)T2 1 + (-2.26 + 6.23i)T + (-63.5 - 53.3i)T^{2}
89 1+(14.6+1.28i)T+(87.6+15.4i)T2 1 + (14.6 + 1.28i)T + (87.6 + 15.4i)T^{2}
97 1+(14.43.88i)T+(84.048.5i)T2 1 + (14.4 - 3.88i)T + (84.0 - 48.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.32745307667119458471774512897, −9.656044536472782210415892855262, −8.800876161710643613887500664219, −8.097188838757360590588017625815, −6.71786846975459772153326352265, −6.08788313286003947902415905480, −5.52101604817882667001764387166, −4.09045980449910228017278275112, −2.53803843537838431534469920188, −1.11621145299750387991400729783, 1.47911902498247134106064971528, 2.49474574925409342399167363478, 3.60307484550655430361175741680, 5.23637195017736311208778862978, 5.93729975741712590088684410789, 6.90236187474009634465107637447, 8.141043167702910780469743263708, 9.079570306056151527952820417984, 9.695107791312777313322390472617, 10.46141512037160129374146564937

Graph of the ZZ-function along the critical line