L(s) = 1 | + (−0.573 + 0.819i)2-s + (−0.342 − 0.939i)4-s + (3.66 − 0.320i)5-s + (−1.19 − 0.999i)7-s + (0.965 + 0.258i)8-s + (−1.83 + 3.18i)10-s + (−1.53 − 2.65i)11-s + (4.68 + 2.18i)13-s + (1.50 − 0.402i)14-s + (−0.766 + 0.642i)16-s + (3.89 − 1.81i)17-s + (−3.65 + 2.55i)19-s + (−1.55 − 3.33i)20-s + (3.05 + 0.267i)22-s + (−1.44 − 5.38i)23-s + ⋯ |
L(s) = 1 | + (−0.405 + 0.579i)2-s + (−0.171 − 0.469i)4-s + (1.63 − 0.143i)5-s + (−0.450 − 0.377i)7-s + (0.341 + 0.0915i)8-s + (−0.581 + 1.00i)10-s + (−0.462 − 0.801i)11-s + (1.29 + 0.605i)13-s + (0.401 − 0.107i)14-s + (−0.191 + 0.160i)16-s + (0.945 − 0.440i)17-s + (−0.837 + 0.586i)19-s + (−0.347 − 0.744i)20-s + (0.651 + 0.0570i)22-s + (−0.300 − 1.12i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0714i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0714i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.55292 + 0.0555605i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.55292 + 0.0555605i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.573 - 0.819i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (5.10 - 3.31i)T \) |
good | 5 | \( 1 + (-3.66 + 0.320i)T + (4.92 - 0.868i)T^{2} \) |
| 7 | \( 1 + (1.19 + 0.999i)T + (1.21 + 6.89i)T^{2} \) |
| 11 | \( 1 + (1.53 + 2.65i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.68 - 2.18i)T + (8.35 + 9.95i)T^{2} \) |
| 17 | \( 1 + (-3.89 + 1.81i)T + (10.9 - 13.0i)T^{2} \) |
| 19 | \( 1 + (3.65 - 2.55i)T + (6.49 - 17.8i)T^{2} \) |
| 23 | \( 1 + (1.44 + 5.38i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-1.43 + 5.35i)T + (-25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (-0.808 + 0.808i)T - 31iT^{2} \) |
| 41 | \( 1 + (-4.40 + 1.60i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (-2.81 - 2.81i)T + 43iT^{2} \) |
| 47 | \( 1 + (-6.67 - 3.85i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.78 - 2.12i)T + (-9.20 + 52.1i)T^{2} \) |
| 59 | \( 1 + (0.929 - 10.6i)T + (-58.1 - 10.2i)T^{2} \) |
| 61 | \( 1 + (2.73 - 5.86i)T + (-39.2 - 46.7i)T^{2} \) |
| 67 | \( 1 + (-6.26 + 7.46i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-11.1 - 1.96i)T + (66.7 + 24.2i)T^{2} \) |
| 73 | \( 1 - 2.09iT - 73T^{2} \) |
| 79 | \( 1 + (-1.21 - 13.8i)T + (-77.7 + 13.7i)T^{2} \) |
| 83 | \( 1 + (-2.26 + 6.23i)T + (-63.5 - 53.3i)T^{2} \) |
| 89 | \( 1 + (14.6 + 1.28i)T + (87.6 + 15.4i)T^{2} \) |
| 97 | \( 1 + (14.4 - 3.88i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32745307667119458471774512897, −9.656044536472782210415892855262, −8.800876161710643613887500664219, −8.097188838757360590588017625815, −6.71786846975459772153326352265, −6.08788313286003947902415905480, −5.52101604817882667001764387166, −4.09045980449910228017278275112, −2.53803843537838431534469920188, −1.11621145299750387991400729783,
1.47911902498247134106064971528, 2.49474574925409342399167363478, 3.60307484550655430361175741680, 5.23637195017736311208778862978, 5.93729975741712590088684410789, 6.90236187474009634465107637447, 8.141043167702910780469743263708, 9.079570306056151527952820417984, 9.695107791312777313322390472617, 10.46141512037160129374146564937