L(s) = 1 | + (0.573 − 0.819i)2-s + (−0.342 − 0.939i)4-s + (0.980 − 0.0857i)5-s + (1.16 + 0.981i)7-s + (−0.965 − 0.258i)8-s + (0.492 − 0.852i)10-s + (3.02 + 5.24i)11-s + (−1.58 − 0.737i)13-s + (1.47 − 0.395i)14-s + (−0.766 + 0.642i)16-s + (7.17 − 3.34i)17-s + (2.99 − 2.09i)19-s + (−0.415 − 0.892i)20-s + (6.03 + 0.527i)22-s + (−0.211 − 0.788i)23-s + ⋯ |
L(s) = 1 | + (0.405 − 0.579i)2-s + (−0.171 − 0.469i)4-s + (0.438 − 0.0383i)5-s + (0.442 + 0.370i)7-s + (−0.341 − 0.0915i)8-s + (0.155 − 0.269i)10-s + (0.912 + 1.58i)11-s + (−0.438 − 0.204i)13-s + (0.394 − 0.105i)14-s + (−0.191 + 0.160i)16-s + (1.73 − 0.811i)17-s + (0.686 − 0.480i)19-s + (−0.0930 − 0.199i)20-s + (1.28 + 0.112i)22-s + (−0.0440 − 0.164i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(0.808+0.588i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(0.808+0.588i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
0.808+0.588i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), 0.808+0.588i)
|
Particular Values
L(1) |
≈ |
2.04042−0.664254i |
L(21) |
≈ |
2.04042−0.664254i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.573+0.819i)T |
| 3 | 1 |
| 37 | 1+(1.29+5.94i)T |
good | 5 | 1+(−0.980+0.0857i)T+(4.92−0.868i)T2 |
| 7 | 1+(−1.16−0.981i)T+(1.21+6.89i)T2 |
| 11 | 1+(−3.02−5.24i)T+(−5.5+9.52i)T2 |
| 13 | 1+(1.58+0.737i)T+(8.35+9.95i)T2 |
| 17 | 1+(−7.17+3.34i)T+(10.9−13.0i)T2 |
| 19 | 1+(−2.99+2.09i)T+(6.49−17.8i)T2 |
| 23 | 1+(0.211+0.788i)T+(−19.9+11.5i)T2 |
| 29 | 1+(0.314−1.17i)T+(−25.1−14.5i)T2 |
| 31 | 1+(−0.312+0.312i)T−31iT2 |
| 41 | 1+(8.84−3.21i)T+(31.4−26.3i)T2 |
| 43 | 1+(4.57+4.57i)T+43iT2 |
| 47 | 1+(−11.5−6.65i)T+(23.5+40.7i)T2 |
| 53 | 1+(−7.93−9.45i)T+(−9.20+52.1i)T2 |
| 59 | 1+(−0.977+11.1i)T+(−58.1−10.2i)T2 |
| 61 | 1+(−3.22+6.92i)T+(−39.2−46.7i)T2 |
| 67 | 1+(3.99−4.75i)T+(−11.6−65.9i)T2 |
| 71 | 1+(7.37+1.30i)T+(66.7+24.2i)T2 |
| 73 | 1−8.51iT−73T2 |
| 79 | 1+(0.00716+0.0819i)T+(−77.7+13.7i)T2 |
| 83 | 1+(0.0951−0.261i)T+(−63.5−53.3i)T2 |
| 89 | 1+(9.92+0.867i)T+(87.6+15.4i)T2 |
| 97 | 1+(7.26−1.94i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25156098253483317755717969806, −9.733227458943813345682160479273, −9.056582602989055659999903884529, −7.68136576834503148931329894350, −6.92214373193147978135385497727, −5.56864172832499023975730233694, −4.98848094677275224843945447663, −3.82930106878101025541759297021, −2.52530826181311822973527144469, −1.42413750434857925482767593992,
1.35372191069369371500901576974, 3.23284629402572855853503366775, 4.02938017678222074196492738033, 5.46750448486327690999220225451, 5.91633879809549021071069685426, 7.01072513874202719944276280990, 7.986448370049164324448739710564, 8.638779169439742551345137869880, 9.763525534743393404384287773540, 10.49696653840477561774229737251