L(s) = 1 | + (−0.573 + 0.819i)2-s + (−0.342 − 0.939i)4-s + (−3.25 + 0.284i)5-s + (−0.761 − 0.638i)7-s + (0.965 + 0.258i)8-s + (1.63 − 2.83i)10-s + (2.46 + 4.26i)11-s + (−3.00 − 1.40i)13-s + (0.960 − 0.257i)14-s + (−0.766 + 0.642i)16-s + (−0.884 + 0.412i)17-s + (6.51 − 4.56i)19-s + (1.38 + 2.96i)20-s + (−4.91 − 0.429i)22-s + (−1.73 − 6.46i)23-s + ⋯ |
L(s) = 1 | + (−0.405 + 0.579i)2-s + (−0.171 − 0.469i)4-s + (−1.45 + 0.127i)5-s + (−0.287 − 0.241i)7-s + (0.341 + 0.0915i)8-s + (0.516 − 0.895i)10-s + (0.743 + 1.28i)11-s + (−0.833 − 0.388i)13-s + (0.256 − 0.0687i)14-s + (−0.191 + 0.160i)16-s + (−0.214 + 0.100i)17-s + (1.49 − 1.04i)19-s + (0.308 + 0.662i)20-s + (−1.04 − 0.0916i)22-s + (−0.361 − 1.34i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(0.903+0.429i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(0.903+0.429i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
0.903+0.429i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), 0.903+0.429i)
|
Particular Values
L(1) |
≈ |
0.698686−0.157674i |
L(21) |
≈ |
0.698686−0.157674i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.573−0.819i)T |
| 3 | 1 |
| 37 | 1+(−2.37−5.60i)T |
good | 5 | 1+(3.25−0.284i)T+(4.92−0.868i)T2 |
| 7 | 1+(0.761+0.638i)T+(1.21+6.89i)T2 |
| 11 | 1+(−2.46−4.26i)T+(−5.5+9.52i)T2 |
| 13 | 1+(3.00+1.40i)T+(8.35+9.95i)T2 |
| 17 | 1+(0.884−0.412i)T+(10.9−13.0i)T2 |
| 19 | 1+(−6.51+4.56i)T+(6.49−17.8i)T2 |
| 23 | 1+(1.73+6.46i)T+(−19.9+11.5i)T2 |
| 29 | 1+(−1.24+4.64i)T+(−25.1−14.5i)T2 |
| 31 | 1+(−7.57+7.57i)T−31iT2 |
| 41 | 1+(−7.43+2.70i)T+(31.4−26.3i)T2 |
| 43 | 1+(1.60+1.60i)T+43iT2 |
| 47 | 1+(−3.88−2.24i)T+(23.5+40.7i)T2 |
| 53 | 1+(7.06+8.42i)T+(−9.20+52.1i)T2 |
| 59 | 1+(0.720−8.23i)T+(−58.1−10.2i)T2 |
| 61 | 1+(3.71−7.97i)T+(−39.2−46.7i)T2 |
| 67 | 1+(1.59−1.89i)T+(−11.6−65.9i)T2 |
| 71 | 1+(5.07+0.894i)T+(66.7+24.2i)T2 |
| 73 | 1−5.03iT−73T2 |
| 79 | 1+(−0.278−3.18i)T+(−77.7+13.7i)T2 |
| 83 | 1+(−3.09+8.50i)T+(−63.5−53.3i)T2 |
| 89 | 1+(5.91+0.517i)T+(87.6+15.4i)T2 |
| 97 | 1+(−11.4+3.07i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16955595983152807213696210558, −9.650020448223171381491981301246, −8.567135235959343606996136074984, −7.59490730177684338060315931985, −7.23714947677144242372894337093, −6.28117842072093014980664319632, −4.71611260065913843435355536511, −4.20842937148244174874986818922, −2.69629893547749514731847645285, −0.54712928448343228198583327443,
1.12237424468986961176868979566, 3.10136977690793833510052680107, 3.68866242849198404595988976045, 4.85429871258052910201591878328, 6.17801494542483143369937597266, 7.44375960635166222944732063019, 7.951912875261990053582597622968, 8.971504096264490286735924156494, 9.577155114273327096188387629573, 10.75488841049895515156986826504