L(s) = 1 | + (−0.573 + 0.819i)2-s + (−0.342 − 0.939i)4-s + (1.31 − 0.114i)5-s + (−1.79 − 1.51i)7-s + (0.965 + 0.258i)8-s + (−0.658 + 1.14i)10-s + (−1.26 − 2.19i)11-s + (−5.68 − 2.65i)13-s + (2.26 − 0.608i)14-s + (−0.766 + 0.642i)16-s + (−2.17 + 1.01i)17-s + (−5.10 + 3.57i)19-s + (−0.556 − 1.19i)20-s + (2.52 + 0.221i)22-s + (1.95 + 7.30i)23-s + ⋯ |
L(s) = 1 | + (−0.405 + 0.579i)2-s + (−0.171 − 0.469i)4-s + (0.587 − 0.0513i)5-s + (−0.680 − 0.570i)7-s + (0.341 + 0.0915i)8-s + (−0.208 + 0.360i)10-s + (−0.382 − 0.662i)11-s + (−1.57 − 0.735i)13-s + (0.606 − 0.162i)14-s + (−0.191 + 0.160i)16-s + (−0.526 + 0.245i)17-s + (−1.17 + 0.820i)19-s + (−0.124 − 0.267i)20-s + (0.538 + 0.0471i)22-s + (0.408 + 1.52i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.645 + 0.763i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.645 + 0.763i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.124564 - 0.268276i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.124564 - 0.268276i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.573 - 0.819i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (6.02 - 0.866i)T \) |
good | 5 | \( 1 + (-1.31 + 0.114i)T + (4.92 - 0.868i)T^{2} \) |
| 7 | \( 1 + (1.79 + 1.51i)T + (1.21 + 6.89i)T^{2} \) |
| 11 | \( 1 + (1.26 + 2.19i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (5.68 + 2.65i)T + (8.35 + 9.95i)T^{2} \) |
| 17 | \( 1 + (2.17 - 1.01i)T + (10.9 - 13.0i)T^{2} \) |
| 19 | \( 1 + (5.10 - 3.57i)T + (6.49 - 17.8i)T^{2} \) |
| 23 | \( 1 + (-1.95 - 7.30i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-2.27 + 8.48i)T + (-25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (-1.77 + 1.77i)T - 31iT^{2} \) |
| 41 | \( 1 + (10.3 - 3.74i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (0.789 + 0.789i)T + 43iT^{2} \) |
| 47 | \( 1 + (-9.67 - 5.58i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.18 + 1.41i)T + (-9.20 + 52.1i)T^{2} \) |
| 59 | \( 1 + (-0.761 + 8.70i)T + (-58.1 - 10.2i)T^{2} \) |
| 61 | \( 1 + (-4.69 + 10.0i)T + (-39.2 - 46.7i)T^{2} \) |
| 67 | \( 1 + (-5.02 + 5.99i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (4.03 + 0.711i)T + (66.7 + 24.2i)T^{2} \) |
| 73 | \( 1 + 10.8iT - 73T^{2} \) |
| 79 | \( 1 + (-0.818 - 9.35i)T + (-77.7 + 13.7i)T^{2} \) |
| 83 | \( 1 + (-0.388 + 1.06i)T + (-63.5 - 53.3i)T^{2} \) |
| 89 | \( 1 + (-0.317 - 0.0277i)T + (87.6 + 15.4i)T^{2} \) |
| 97 | \( 1 + (-12.8 + 3.43i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.973845834616758908182545601084, −9.562329293869585571755482135741, −8.314274491817895999694188738325, −7.64368442824694157496259695484, −6.62391085058109591956051028421, −5.85313489028721498177464327951, −4.92067928385727593669315550712, −3.55259856942433448798839150086, −2.11723774832707052984414094631, −0.16288020257869580931322319848,
2.15521313097231060019912821253, 2.69635650782155329414000392666, 4.37779694985330356764197615045, 5.21892978423689253660983587730, 6.69676181866716138015028267886, 7.11277555971713332823859402691, 8.729876948629715414314125475970, 9.038172596833064552719142793423, 10.18415232992137739439415636357, 10.41996433493717024790763360078