L(s) = 1 | + (−0.573 + 0.819i)2-s + (−0.342 − 0.939i)4-s + (1.31 − 0.114i)5-s + (−1.79 − 1.51i)7-s + (0.965 + 0.258i)8-s + (−0.658 + 1.14i)10-s + (−1.26 − 2.19i)11-s + (−5.68 − 2.65i)13-s + (2.26 − 0.608i)14-s + (−0.766 + 0.642i)16-s + (−2.17 + 1.01i)17-s + (−5.10 + 3.57i)19-s + (−0.556 − 1.19i)20-s + (2.52 + 0.221i)22-s + (1.95 + 7.30i)23-s + ⋯ |
L(s) = 1 | + (−0.405 + 0.579i)2-s + (−0.171 − 0.469i)4-s + (0.587 − 0.0513i)5-s + (−0.680 − 0.570i)7-s + (0.341 + 0.0915i)8-s + (−0.208 + 0.360i)10-s + (−0.382 − 0.662i)11-s + (−1.57 − 0.735i)13-s + (0.606 − 0.162i)14-s + (−0.191 + 0.160i)16-s + (−0.526 + 0.245i)17-s + (−1.17 + 0.820i)19-s + (−0.124 − 0.267i)20-s + (0.538 + 0.0471i)22-s + (0.408 + 1.52i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(−0.645+0.763i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(−0.645+0.763i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
−0.645+0.763i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), −0.645+0.763i)
|
Particular Values
L(1) |
≈ |
0.124564−0.268276i |
L(21) |
≈ |
0.124564−0.268276i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.573−0.819i)T |
| 3 | 1 |
| 37 | 1+(6.02−0.866i)T |
good | 5 | 1+(−1.31+0.114i)T+(4.92−0.868i)T2 |
| 7 | 1+(1.79+1.51i)T+(1.21+6.89i)T2 |
| 11 | 1+(1.26+2.19i)T+(−5.5+9.52i)T2 |
| 13 | 1+(5.68+2.65i)T+(8.35+9.95i)T2 |
| 17 | 1+(2.17−1.01i)T+(10.9−13.0i)T2 |
| 19 | 1+(5.10−3.57i)T+(6.49−17.8i)T2 |
| 23 | 1+(−1.95−7.30i)T+(−19.9+11.5i)T2 |
| 29 | 1+(−2.27+8.48i)T+(−25.1−14.5i)T2 |
| 31 | 1+(−1.77+1.77i)T−31iT2 |
| 41 | 1+(10.3−3.74i)T+(31.4−26.3i)T2 |
| 43 | 1+(0.789+0.789i)T+43iT2 |
| 47 | 1+(−9.67−5.58i)T+(23.5+40.7i)T2 |
| 53 | 1+(1.18+1.41i)T+(−9.20+52.1i)T2 |
| 59 | 1+(−0.761+8.70i)T+(−58.1−10.2i)T2 |
| 61 | 1+(−4.69+10.0i)T+(−39.2−46.7i)T2 |
| 67 | 1+(−5.02+5.99i)T+(−11.6−65.9i)T2 |
| 71 | 1+(4.03+0.711i)T+(66.7+24.2i)T2 |
| 73 | 1+10.8iT−73T2 |
| 79 | 1+(−0.818−9.35i)T+(−77.7+13.7i)T2 |
| 83 | 1+(−0.388+1.06i)T+(−63.5−53.3i)T2 |
| 89 | 1+(−0.317−0.0277i)T+(87.6+15.4i)T2 |
| 97 | 1+(−12.8+3.43i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.973845834616758908182545601084, −9.562329293869585571755482135741, −8.314274491817895999694188738325, −7.64368442824694157496259695484, −6.62391085058109591956051028421, −5.85313489028721498177464327951, −4.92067928385727593669315550712, −3.55259856942433448798839150086, −2.11723774832707052984414094631, −0.16288020257869580931322319848,
2.15521313097231060019912821253, 2.69635650782155329414000392666, 4.37779694985330356764197615045, 5.21892978423689253660983587730, 6.69676181866716138015028267886, 7.11277555971713332823859402691, 8.729876948629715414314125475970, 9.038172596833064552719142793423, 10.18415232992137739439415636357, 10.41996433493717024790763360078