L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (−0.653 + 2.43i)5-s + (−1.76 − 3.05i)7-s + (−0.707 − 0.707i)8-s − 2.52·10-s − 2.53·11-s + (−2.84 − 0.762i)13-s + (2.49 − 2.49i)14-s + (0.500 − 0.866i)16-s + (1.73 − 0.463i)17-s + (−3.53 − 0.946i)19-s + (−0.653 − 2.43i)20-s + (−0.656 − 2.44i)22-s + (−3.15 − 3.15i)23-s + ⋯ |
L(s) = 1 | + (0.183 + 0.683i)2-s + (−0.433 + 0.249i)4-s + (−0.292 + 1.09i)5-s + (−0.666 − 1.15i)7-s + (−0.249 − 0.249i)8-s − 0.798·10-s − 0.764·11-s + (−0.788 − 0.211i)13-s + (0.666 − 0.666i)14-s + (0.125 − 0.216i)16-s + (0.419 − 0.112i)17-s + (−0.809 − 0.217i)19-s + (−0.146 − 0.545i)20-s + (−0.139 − 0.521i)22-s + (−0.658 − 0.658i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(−0.358+0.933i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(−0.358+0.933i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
−0.358+0.933i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(125,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), −0.358+0.933i)
|
Particular Values
L(1) |
≈ |
0.0542814−0.0789563i |
L(21) |
≈ |
0.0542814−0.0789563i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.258−0.965i)T |
| 3 | 1 |
| 37 | 1+(6.08−0.00578i)T |
good | 5 | 1+(0.653−2.43i)T+(−4.33−2.5i)T2 |
| 7 | 1+(1.76+3.05i)T+(−3.5+6.06i)T2 |
| 11 | 1+2.53T+11T2 |
| 13 | 1+(2.84+0.762i)T+(11.2+6.5i)T2 |
| 17 | 1+(−1.73+0.463i)T+(14.7−8.5i)T2 |
| 19 | 1+(3.53+0.946i)T+(16.4+9.5i)T2 |
| 23 | 1+(3.15+3.15i)T+23iT2 |
| 29 | 1+(0.0393−0.0393i)T−29iT2 |
| 31 | 1+(3.02+3.02i)T+31iT2 |
| 41 | 1+(−4.63−8.02i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−0.234+0.234i)T−43iT2 |
| 47 | 1+4.39iT−47T2 |
| 53 | 1+(−3.09−1.78i)T+(26.5+45.8i)T2 |
| 59 | 1+(9.18−2.46i)T+(51.0−29.5i)T2 |
| 61 | 1+(−2.55+9.52i)T+(−52.8−30.5i)T2 |
| 67 | 1+(13.5−7.80i)T+(33.5−58.0i)T2 |
| 71 | 1+(3.56−2.05i)T+(35.5−61.4i)T2 |
| 73 | 1+4.09iT−73T2 |
| 79 | 1+(−2.84−0.762i)T+(68.4+39.5i)T2 |
| 83 | 1+(7.86+4.54i)T+(41.5+71.8i)T2 |
| 89 | 1+(−3.78−14.1i)T+(−77.0+44.5i)T2 |
| 97 | 1+(0.841−0.841i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.38052756657648434473830580809, −9.506276679685842714451361288185, −8.162727912242060737507520843938, −7.39527366704529346084038574123, −6.86995946153389996326926008449, −5.96053706999823549901230430620, −4.68085289895640541727176438744, −3.67465967626637059888483013426, −2.68559317459148088107265259495, −0.04515174853428826234087614038,
1.90115294399461783874900591822, 3.03682928393788141046664146063, 4.30166319953181783098753243742, 5.27114982356675595507044390392, 5.93753181383144319698537450689, 7.43300867247320274712469319711, 8.515080629940045051635058000523, 9.070127722000197504055680085796, 9.896091021939731938422202659763, 10.76129785504004006157738200386