L(s) = 1 | + (0.258 + 0.965i)2-s + (−0.866 + 0.499i)4-s + (0.205 − 0.765i)5-s + (−0.103 − 0.179i)7-s + (−0.707 − 0.707i)8-s + 0.792·10-s + 2.15·11-s + (3.34 + 0.896i)13-s + (0.146 − 0.146i)14-s + (0.500 − 0.866i)16-s + (−1.47 + 0.394i)17-s + (5.53 + 1.48i)19-s + (0.205 + 0.765i)20-s + (0.557 + 2.08i)22-s + (−0.186 − 0.186i)23-s + ⋯ |
L(s) = 1 | + (0.183 + 0.683i)2-s + (−0.433 + 0.249i)4-s + (0.0917 − 0.342i)5-s + (−0.0392 − 0.0679i)7-s + (−0.249 − 0.249i)8-s + 0.250·10-s + 0.649·11-s + (0.927 + 0.248i)13-s + (0.0392 − 0.0392i)14-s + (0.125 − 0.216i)16-s + (−0.357 + 0.0956i)17-s + (1.26 + 0.339i)19-s + (0.0458 + 0.171i)20-s + (0.118 + 0.443i)22-s + (−0.0388 − 0.0388i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(0.600−0.799i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(0.600−0.799i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
0.600−0.799i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(125,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), 0.600−0.799i)
|
Particular Values
L(1) |
≈ |
1.52901+0.763744i |
L(21) |
≈ |
1.52901+0.763744i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.258−0.965i)T |
| 3 | 1 |
| 37 | 1+(−5.85−1.66i)T |
good | 5 | 1+(−0.205+0.765i)T+(−4.33−2.5i)T2 |
| 7 | 1+(0.103+0.179i)T+(−3.5+6.06i)T2 |
| 11 | 1−2.15T+11T2 |
| 13 | 1+(−3.34−0.896i)T+(11.2+6.5i)T2 |
| 17 | 1+(1.47−0.394i)T+(14.7−8.5i)T2 |
| 19 | 1+(−5.53−1.48i)T+(16.4+9.5i)T2 |
| 23 | 1+(0.186+0.186i)T+23iT2 |
| 29 | 1+(0.667−0.667i)T−29iT2 |
| 31 | 1+(−2.39−2.39i)T+31iT2 |
| 41 | 1+(2.63+4.55i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1.86−1.86i)T−43iT2 |
| 47 | 1−3.73iT−47T2 |
| 53 | 1+(0.970+0.560i)T+(26.5+45.8i)T2 |
| 59 | 1+(6.83−1.83i)T+(51.0−29.5i)T2 |
| 61 | 1+(0.320−1.19i)T+(−52.8−30.5i)T2 |
| 67 | 1+(6.44−3.72i)T+(33.5−58.0i)T2 |
| 71 | 1+(−3.47+2.00i)T+(35.5−61.4i)T2 |
| 73 | 1+9.83iT−73T2 |
| 79 | 1+(3.34+0.896i)T+(68.4+39.5i)T2 |
| 83 | 1+(−7.29−4.21i)T+(41.5+71.8i)T2 |
| 89 | 1+(0.507+1.89i)T+(−77.0+44.5i)T2 |
| 97 | 1+(4.15−4.15i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62002906821051631105634173954, −9.493393003804710855312006449517, −8.891885225729608108454327361178, −8.018376133746006848659885044394, −7.01515078120708275542238517004, −6.21575835649511817290087430557, −5.27976674613886918035892301856, −4.25538050247770726400347790500, −3.22746434661407429625462655682, −1.29569023629433021586727680618,
1.13925233186444972260261100897, 2.65940842112393880189001343408, 3.63280086091979688156531299912, 4.70725113253542381451038618250, 5.85917624308167510201974984698, 6.70409427741255474768371399092, 7.86891023372858099666431816283, 8.898259300839418803708681134807, 9.593461981277997341309709174772, 10.51251576070109077751412253749