L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (−0.448 + 1.67i)5-s + (−1 − 1.73i)7-s + (0.707 + 0.707i)8-s + 1.73·10-s + 3.86·11-s + (−4.09 − 1.09i)13-s + (−1.41 + 1.41i)14-s + (0.500 − 0.866i)16-s + (5.53 − 1.48i)17-s + (1 + 0.267i)19-s + (−0.448 − 1.67i)20-s + (−0.999 − 3.73i)22-s + (3.86 + 3.86i)23-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (−0.433 + 0.249i)4-s + (−0.200 + 0.748i)5-s + (−0.377 − 0.654i)7-s + (0.249 + 0.249i)8-s + 0.547·10-s + 1.16·11-s + (−1.13 − 0.304i)13-s + (−0.377 + 0.377i)14-s + (0.125 − 0.216i)16-s + (1.34 − 0.359i)17-s + (0.229 + 0.0614i)19-s + (−0.100 − 0.374i)20-s + (−0.213 − 0.795i)22-s + (0.805 + 0.805i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.690 + 0.723i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.690 + 0.723i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.16989 - 0.500493i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.16989 - 0.500493i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-2.59 + 5.5i)T \) |
good | 5 | \( 1 + (0.448 - 1.67i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (1 + 1.73i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 3.86T + 11T^{2} \) |
| 13 | \( 1 + (4.09 + 1.09i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (-5.53 + 1.48i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-1 - 0.267i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-3.86 - 3.86i)T + 23iT^{2} \) |
| 29 | \( 1 + (-6.50 + 6.50i)T - 29iT^{2} \) |
| 31 | \( 1 + (-1.26 - 1.26i)T + 31iT^{2} \) |
| 41 | \( 1 + (-0.258 - 0.448i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.73 + 4.73i)T - 43iT^{2} \) |
| 47 | \( 1 - 5.93iT - 47T^{2} \) |
| 53 | \( 1 + (-1.22 - 0.707i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (9.14 - 2.44i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.42 - 9.06i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-9 + 5.19i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.58 - 4.38i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 4iT - 73T^{2} \) |
| 79 | \( 1 + (13.9 + 3.73i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (4.89 + 2.82i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.258 - 0.965i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-3.63 + 3.63i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28020140430667721634388690958, −9.807198582230523127516659484554, −8.941541239992399894596607486875, −7.55147404740296816803573963378, −7.18852166355302504907081719082, −5.93760924257146085989573322573, −4.62220237102513721150247863720, −3.55054841379858594156274084274, −2.75362200415880039695538384352, −0.989498649154790071725286313333,
1.12411464036829486731155354282, 2.98911111113836348909812297716, 4.42877417764614220942241956939, 5.17515251131172490298000152759, 6.26414451101063990667984611693, 7.03663564934327852840248745824, 8.119107045194168839773980726905, 8.889177597864080382002626113214, 9.495840932497176271964077507121, 10.34233733678853363130670933125