L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (−0.448 + 1.67i)5-s + (−1 − 1.73i)7-s + (0.707 + 0.707i)8-s + 1.73·10-s + 3.86·11-s + (−4.09 − 1.09i)13-s + (−1.41 + 1.41i)14-s + (0.500 − 0.866i)16-s + (5.53 − 1.48i)17-s + (1 + 0.267i)19-s + (−0.448 − 1.67i)20-s + (−0.999 − 3.73i)22-s + (3.86 + 3.86i)23-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (−0.433 + 0.249i)4-s + (−0.200 + 0.748i)5-s + (−0.377 − 0.654i)7-s + (0.249 + 0.249i)8-s + 0.547·10-s + 1.16·11-s + (−1.13 − 0.304i)13-s + (−0.377 + 0.377i)14-s + (0.125 − 0.216i)16-s + (1.34 − 0.359i)17-s + (0.229 + 0.0614i)19-s + (−0.100 − 0.374i)20-s + (−0.213 − 0.795i)22-s + (0.805 + 0.805i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(0.690+0.723i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(0.690+0.723i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
0.690+0.723i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(125,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), 0.690+0.723i)
|
Particular Values
L(1) |
≈ |
1.16989−0.500493i |
L(21) |
≈ |
1.16989−0.500493i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258+0.965i)T |
| 3 | 1 |
| 37 | 1+(−2.59+5.5i)T |
good | 5 | 1+(0.448−1.67i)T+(−4.33−2.5i)T2 |
| 7 | 1+(1+1.73i)T+(−3.5+6.06i)T2 |
| 11 | 1−3.86T+11T2 |
| 13 | 1+(4.09+1.09i)T+(11.2+6.5i)T2 |
| 17 | 1+(−5.53+1.48i)T+(14.7−8.5i)T2 |
| 19 | 1+(−1−0.267i)T+(16.4+9.5i)T2 |
| 23 | 1+(−3.86−3.86i)T+23iT2 |
| 29 | 1+(−6.50+6.50i)T−29iT2 |
| 31 | 1+(−1.26−1.26i)T+31iT2 |
| 41 | 1+(−0.258−0.448i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−4.73+4.73i)T−43iT2 |
| 47 | 1−5.93iT−47T2 |
| 53 | 1+(−1.22−0.707i)T+(26.5+45.8i)T2 |
| 59 | 1+(9.14−2.44i)T+(51.0−29.5i)T2 |
| 61 | 1+(2.42−9.06i)T+(−52.8−30.5i)T2 |
| 67 | 1+(−9+5.19i)T+(33.5−58.0i)T2 |
| 71 | 1+(7.58−4.38i)T+(35.5−61.4i)T2 |
| 73 | 1+4iT−73T2 |
| 79 | 1+(13.9+3.73i)T+(68.4+39.5i)T2 |
| 83 | 1+(4.89+2.82i)T+(41.5+71.8i)T2 |
| 89 | 1+(−0.258−0.965i)T+(−77.0+44.5i)T2 |
| 97 | 1+(−3.63+3.63i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28020140430667721634388690958, −9.807198582230523127516659484554, −8.941541239992399894596607486875, −7.55147404740296816803573963378, −7.18852166355302504907081719082, −5.93760924257146085989573322573, −4.62220237102513721150247863720, −3.55054841379858594156274084274, −2.75362200415880039695538384352, −0.989498649154790071725286313333,
1.12411464036829486731155354282, 2.98911111113836348909812297716, 4.42877417764614220942241956939, 5.17515251131172490298000152759, 6.26414451101063990667984611693, 7.03663564934327852840248745824, 8.119107045194168839773980726905, 8.889177597864080382002626113214, 9.495840932497176271964077507121, 10.34233733678853363130670933125