Properties

Label 2-666-1.1-c1-0-9
Degree $2$
Conductor $666$
Sign $-1$
Analytic cond. $5.31803$
Root an. cond. $2.30608$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s − 1.56·7-s − 8-s + 2·10-s + 1.56·11-s + 6.68·13-s + 1.56·14-s + 16-s − 3.56·17-s − 3.56·19-s − 2·20-s − 1.56·22-s − 8.68·23-s − 25-s − 6.68·26-s − 1.56·28-s + 1.12·29-s − 9.12·31-s − 32-s + 3.56·34-s + 3.12·35-s − 37-s + 3.56·38-s + 2·40-s − 11.1·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.894·5-s − 0.590·7-s − 0.353·8-s + 0.632·10-s + 0.470·11-s + 1.85·13-s + 0.417·14-s + 0.250·16-s − 0.863·17-s − 0.817·19-s − 0.447·20-s − 0.332·22-s − 1.81·23-s − 0.200·25-s − 1.31·26-s − 0.295·28-s + 0.208·29-s − 1.63·31-s − 0.176·32-s + 0.610·34-s + 0.527·35-s − 0.164·37-s + 0.577·38-s + 0.316·40-s − 1.73·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(666\)    =    \(2 \cdot 3^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(5.31803\)
Root analytic conductor: \(2.30608\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 666,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 + 2T + 5T^{2} \)
7 \( 1 + 1.56T + 7T^{2} \)
11 \( 1 - 1.56T + 11T^{2} \)
13 \( 1 - 6.68T + 13T^{2} \)
17 \( 1 + 3.56T + 17T^{2} \)
19 \( 1 + 3.56T + 19T^{2} \)
23 \( 1 + 8.68T + 23T^{2} \)
29 \( 1 - 1.12T + 29T^{2} \)
31 \( 1 + 9.12T + 31T^{2} \)
41 \( 1 + 11.1T + 41T^{2} \)
43 \( 1 - 1.12T + 43T^{2} \)
47 \( 1 - 10.2T + 47T^{2} \)
53 \( 1 - 1.56T + 53T^{2} \)
59 \( 1 + 0.876T + 59T^{2} \)
61 \( 1 + 12.2T + 61T^{2} \)
67 \( 1 - 2.24T + 67T^{2} \)
71 \( 1 + 2.24T + 71T^{2} \)
73 \( 1 - 3.56T + 73T^{2} \)
79 \( 1 + 6T + 79T^{2} \)
83 \( 1 + 14.9T + 83T^{2} \)
89 \( 1 - 12.9T + 89T^{2} \)
97 \( 1 - 2.87T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13584358345770401042953234905, −8.975123713168213773965377021203, −8.523746805209980316711267621929, −7.59496725573606989190371983421, −6.55607500307732686649523299053, −5.93492862049092353964252060622, −4.13297606196451654133338922812, −3.51422167165774756982684200647, −1.81225175702583064467541270675, 0, 1.81225175702583064467541270675, 3.51422167165774756982684200647, 4.13297606196451654133338922812, 5.93492862049092353964252060622, 6.55607500307732686649523299053, 7.59496725573606989190371983421, 8.523746805209980316711267621929, 8.975123713168213773965377021203, 10.13584358345770401042953234905

Graph of the $Z$-function along the critical line