L(s) = 1 | − 2-s + 4-s − 2·5-s − 1.56·7-s − 8-s + 2·10-s + 1.56·11-s + 6.68·13-s + 1.56·14-s + 16-s − 3.56·17-s − 3.56·19-s − 2·20-s − 1.56·22-s − 8.68·23-s − 25-s − 6.68·26-s − 1.56·28-s + 1.12·29-s − 9.12·31-s − 32-s + 3.56·34-s + 3.12·35-s − 37-s + 3.56·38-s + 2·40-s − 11.1·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 0.894·5-s − 0.590·7-s − 0.353·8-s + 0.632·10-s + 0.470·11-s + 1.85·13-s + 0.417·14-s + 0.250·16-s − 0.863·17-s − 0.817·19-s − 0.447·20-s − 0.332·22-s − 1.81·23-s − 0.200·25-s − 1.31·26-s − 0.295·28-s + 0.208·29-s − 1.63·31-s − 0.176·32-s + 0.610·34-s + 0.527·35-s − 0.164·37-s + 0.577·38-s + 0.316·40-s − 1.73·41-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 37 | 1+T |
good | 5 | 1+2T+5T2 |
| 7 | 1+1.56T+7T2 |
| 11 | 1−1.56T+11T2 |
| 13 | 1−6.68T+13T2 |
| 17 | 1+3.56T+17T2 |
| 19 | 1+3.56T+19T2 |
| 23 | 1+8.68T+23T2 |
| 29 | 1−1.12T+29T2 |
| 31 | 1+9.12T+31T2 |
| 41 | 1+11.1T+41T2 |
| 43 | 1−1.12T+43T2 |
| 47 | 1−10.2T+47T2 |
| 53 | 1−1.56T+53T2 |
| 59 | 1+0.876T+59T2 |
| 61 | 1+12.2T+61T2 |
| 67 | 1−2.24T+67T2 |
| 71 | 1+2.24T+71T2 |
| 73 | 1−3.56T+73T2 |
| 79 | 1+6T+79T2 |
| 83 | 1+14.9T+83T2 |
| 89 | 1−12.9T+89T2 |
| 97 | 1−2.87T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.13584358345770401042953234905, −8.975123713168213773965377021203, −8.523746805209980316711267621929, −7.59496725573606989190371983421, −6.55607500307732686649523299053, −5.93492862049092353964252060622, −4.13297606196451654133338922812, −3.51422167165774756982684200647, −1.81225175702583064467541270675, 0,
1.81225175702583064467541270675, 3.51422167165774756982684200647, 4.13297606196451654133338922812, 5.93492862049092353964252060622, 6.55607500307732686649523299053, 7.59496725573606989190371983421, 8.523746805209980316711267621929, 8.975123713168213773965377021203, 10.13584358345770401042953234905