Properties

Label 2-666-1.1-c1-0-13
Degree $2$
Conductor $666$
Sign $-1$
Analytic cond. $5.31803$
Root an. cond. $2.30608$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·5-s − 7-s + 8-s − 4·10-s + 11-s − 3·13-s − 14-s + 16-s − 3·17-s − 5·19-s − 4·20-s + 22-s − 5·23-s + 11·25-s − 3·26-s − 28-s − 4·29-s − 10·31-s + 32-s − 3·34-s + 4·35-s − 37-s − 5·38-s − 4·40-s + 6·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.78·5-s − 0.377·7-s + 0.353·8-s − 1.26·10-s + 0.301·11-s − 0.832·13-s − 0.267·14-s + 1/4·16-s − 0.727·17-s − 1.14·19-s − 0.894·20-s + 0.213·22-s − 1.04·23-s + 11/5·25-s − 0.588·26-s − 0.188·28-s − 0.742·29-s − 1.79·31-s + 0.176·32-s − 0.514·34-s + 0.676·35-s − 0.164·37-s − 0.811·38-s − 0.632·40-s + 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(666\)    =    \(2 \cdot 3^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(5.31803\)
Root analytic conductor: \(2.30608\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 666,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
13 \( 1 + 3 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 + 5 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 - 11 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 14 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 + 11 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.34656449179909477685318487264, −9.100924645180121051837481922239, −8.162699398202549566838232688366, −7.32327856135543720727953115667, −6.66446396406084609826772404942, −5.36951137817095598841912521526, −4.13511654126083004672518336782, −3.82521452982993692459318044646, −2.37866343224007325240428184274, 0, 2.37866343224007325240428184274, 3.82521452982993692459318044646, 4.13511654126083004672518336782, 5.36951137817095598841912521526, 6.66446396406084609826772404942, 7.32327856135543720727953115667, 8.162699398202549566838232688366, 9.100924645180121051837481922239, 10.34656449179909477685318487264

Graph of the $Z$-function along the critical line