L(s) = 1 | + 2-s + 4-s − 4·5-s − 7-s + 8-s − 4·10-s + 11-s − 3·13-s − 14-s + 16-s − 3·17-s − 5·19-s − 4·20-s + 22-s − 5·23-s + 11·25-s − 3·26-s − 28-s − 4·29-s − 10·31-s + 32-s − 3·34-s + 4·35-s − 37-s − 5·38-s − 4·40-s + 6·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 1.78·5-s − 0.377·7-s + 0.353·8-s − 1.26·10-s + 0.301·11-s − 0.832·13-s − 0.267·14-s + 1/4·16-s − 0.727·17-s − 1.14·19-s − 0.894·20-s + 0.213·22-s − 1.04·23-s + 11/5·25-s − 0.588·26-s − 0.188·28-s − 0.742·29-s − 1.79·31-s + 0.176·32-s − 0.514·34-s + 0.676·35-s − 0.164·37-s − 0.811·38-s − 0.632·40-s + 0.937·41-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 37 | 1+T |
good | 5 | 1+4T+pT2 |
| 7 | 1+T+pT2 |
| 11 | 1−T+pT2 |
| 13 | 1+3T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1+5T+pT2 |
| 23 | 1+5T+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1+10T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+2T+pT2 |
| 53 | 1−11T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−14T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+11T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−9T+pT2 |
| 89 | 1+11T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.34656449179909477685318487264, −9.100924645180121051837481922239, −8.162699398202549566838232688366, −7.32327856135543720727953115667, −6.66446396406084609826772404942, −5.36951137817095598841912521526, −4.13511654126083004672518336782, −3.82521452982993692459318044646, −2.37866343224007325240428184274, 0,
2.37866343224007325240428184274, 3.82521452982993692459318044646, 4.13511654126083004672518336782, 5.36951137817095598841912521526, 6.66446396406084609826772404942, 7.32327856135543720727953115667, 8.162699398202549566838232688366, 9.100924645180121051837481922239, 10.34656449179909477685318487264