Properties

Label 2-666-1.1-c1-0-12
Degree $2$
Conductor $666$
Sign $-1$
Analytic cond. $5.31803$
Root an. cond. $2.30608$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s − 3·11-s − 13-s + 14-s + 16-s + 3·17-s − 7·19-s + 3·22-s − 3·23-s − 5·25-s + 26-s − 28-s + 2·31-s − 32-s − 3·34-s + 37-s + 7·38-s + 6·41-s − 4·43-s − 3·44-s + 3·46-s − 6·47-s − 6·49-s + 5·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s − 0.904·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s + 0.727·17-s − 1.60·19-s + 0.639·22-s − 0.625·23-s − 25-s + 0.196·26-s − 0.188·28-s + 0.359·31-s − 0.176·32-s − 0.514·34-s + 0.164·37-s + 1.13·38-s + 0.937·41-s − 0.609·43-s − 0.452·44-s + 0.442·46-s − 0.875·47-s − 6/7·49-s + 0.707·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(666\)    =    \(2 \cdot 3^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(5.31803\)
Root analytic conductor: \(2.30608\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 666,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
37 \( 1 - T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 5 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06815972051721250592457118805, −9.339371053419225859875408435925, −8.208412645914458611430202370847, −7.73927537740876447103082520863, −6.55620004019545166157451145997, −5.78215828046120660270620191902, −4.49624163661933276807437922670, −3.14043362082132550386338477310, −1.96278840753819796229532576491, 0, 1.96278840753819796229532576491, 3.14043362082132550386338477310, 4.49624163661933276807437922670, 5.78215828046120660270620191902, 6.55620004019545166157451145997, 7.73927537740876447103082520863, 8.208412645914458611430202370847, 9.339371053419225859875408435925, 10.06815972051721250592457118805

Graph of the $Z$-function along the critical line