Properties

Label 2-666-1.1-c1-0-10
Degree $2$
Conductor $666$
Sign $1$
Analytic cond. $5.31803$
Root an. cond. $2.30608$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4·5-s + 3·7-s + 8-s + 4·10-s − 5·11-s + 3·13-s + 3·14-s + 16-s − 3·17-s − 7·19-s + 4·20-s − 5·22-s − 9·23-s + 11·25-s + 3·26-s + 3·28-s − 2·31-s + 32-s − 3·34-s + 12·35-s + 37-s − 7·38-s + 4·40-s − 6·41-s + 4·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.78·5-s + 1.13·7-s + 0.353·8-s + 1.26·10-s − 1.50·11-s + 0.832·13-s + 0.801·14-s + 1/4·16-s − 0.727·17-s − 1.60·19-s + 0.894·20-s − 1.06·22-s − 1.87·23-s + 11/5·25-s + 0.588·26-s + 0.566·28-s − 0.359·31-s + 0.176·32-s − 0.514·34-s + 2.02·35-s + 0.164·37-s − 1.13·38-s + 0.632·40-s − 0.937·41-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(666\)    =    \(2 \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(5.31803\)
Root analytic conductor: \(2.30608\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 666,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.068028744\)
\(L(\frac12)\) \(\approx\) \(3.068028744\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
37 \( 1 - T \)
good5 \( 1 - 4 T + p T^{2} \)
7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 + 9 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 6 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 13 T + p T^{2} \)
79 \( 1 + 6 T + p T^{2} \)
83 \( 1 + 5 T + p T^{2} \)
89 \( 1 + 11 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66123771129793013895319012928, −9.914305521533027310416702610710, −8.668480330778590791299654356016, −7.989549022432806984304290222280, −6.61856061275031960976062588393, −5.83968165780663709630491739946, −5.19848296413414906626093432671, −4.18804468941342822592597020971, −2.40265859153889095661502631676, −1.88395043108710714192663999988, 1.88395043108710714192663999988, 2.40265859153889095661502631676, 4.18804468941342822592597020971, 5.19848296413414906626093432671, 5.83968165780663709630491739946, 6.61856061275031960976062588393, 7.989549022432806984304290222280, 8.668480330778590791299654356016, 9.914305521533027310416702610710, 10.66123771129793013895319012928

Graph of the $Z$-function along the critical line