L(s) = 1 | + (0.309 − 0.951i)2-s + (0.809 − 0.587i)3-s + (−0.809 − 0.587i)4-s + (0.881 + 2.71i)5-s + (−0.309 − 0.951i)6-s + (−3.73 − 2.71i)7-s + (−0.809 + 0.587i)8-s + (0.309 − 0.951i)9-s + 2.85·10-s + (1.23 + 3.07i)11-s − 0.999·12-s + (−1 + 3.07i)13-s + (−3.73 + 2.71i)14-s + (2.30 + 1.67i)15-s + (0.309 + 0.951i)16-s + (−0.763 − 2.35i)17-s + ⋯ |
L(s) = 1 | + (0.218 − 0.672i)2-s + (0.467 − 0.339i)3-s + (−0.404 − 0.293i)4-s + (0.394 + 1.21i)5-s + (−0.126 − 0.388i)6-s + (−1.41 − 1.02i)7-s + (−0.286 + 0.207i)8-s + (0.103 − 0.317i)9-s + 0.902·10-s + (0.372 + 0.927i)11-s − 0.288·12-s + (−0.277 + 0.853i)13-s + (−0.998 + 0.725i)14-s + (0.596 + 0.433i)15-s + (0.0772 + 0.237i)16-s + (−0.185 − 0.570i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.675 + 0.737i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.675 + 0.737i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.946344 - 0.416368i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.946344 - 0.416368i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 3 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (-1.23 - 3.07i)T \) |
good | 5 | \( 1 + (-0.881 - 2.71i)T + (-4.04 + 2.93i)T^{2} \) |
| 7 | \( 1 + (3.73 + 2.71i)T + (2.16 + 6.65i)T^{2} \) |
| 13 | \( 1 + (1 - 3.07i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (0.763 + 2.35i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-2.61 + 1.90i)T + (5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + 3.23T + 23T^{2} \) |
| 29 | \( 1 + (-0.309 - 0.224i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-2.66 + 8.19i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (1.23 + 0.898i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-2.61 + 1.90i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 3.23T + 43T^{2} \) |
| 47 | \( 1 + (2 - 1.45i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (1.19 - 3.66i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-3.11 - 2.26i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (2.09 + 6.43i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 - 4T + 67T^{2} \) |
| 71 | \( 1 + (-3.85 - 11.8i)T + (-57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (-9.16 - 6.65i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (2.88 - 8.86i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (0.208 + 0.640i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 11.7T + 89T^{2} \) |
| 97 | \( 1 + (-3.5 + 10.7i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.24877257433065475041057434289, −13.73726511968201784921522542436, −12.65734239272869508996642640540, −11.35979307059915347956851765828, −9.972931815834157436577685010723, −9.556910968959328256918041132018, −7.23981222633069435622056849657, −6.50988425381615641140379066244, −3.98143876458090391076324401961, −2.58932707928477112464601696660,
3.33683025332866080474040301222, 5.25527585676081333804439890501, 6.24724824530057742156387244425, 8.285780652857303209955982758433, 9.041222480456437267817730434656, 9.997018121329256051312572490793, 12.20105422384352318508955667981, 12.93129864811880856625453294527, 13.87586881843360857721096294098, 15.22906561725887678253815752748