L(s) = 1 | + (1.34 − 0.437i)2-s + (−1.40 − 1.01i)3-s + (1.61 − 1.17i)4-s + (1.91 − 5.90i)5-s + (−2.32 − 0.756i)6-s + (1.56 + 2.15i)7-s + (1.66 − 2.28i)8-s + (0.927 + 2.85i)9-s − 8.77i·10-s + (6.10 + 9.15i)11-s − 3.46·12-s + (−7.54 + 2.45i)13-s + (3.04 + 2.21i)14-s + (−8.69 + 6.31i)15-s + (1.23 − 3.80i)16-s + (−7.16 − 2.32i)17-s + ⋯ |
L(s) = 1 | + (0.672 − 0.218i)2-s + (−0.467 − 0.339i)3-s + (0.404 − 0.293i)4-s + (0.383 − 1.18i)5-s + (−0.388 − 0.126i)6-s + (0.223 + 0.307i)7-s + (0.207 − 0.286i)8-s + (0.103 + 0.317i)9-s − 0.877i·10-s + (0.554 + 0.831i)11-s − 0.288·12-s + (−0.580 + 0.188i)13-s + (0.217 + 0.158i)14-s + (−0.579 + 0.421i)15-s + (0.0772 − 0.237i)16-s + (−0.421 − 0.136i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.573 + 0.819i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.573 + 0.819i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.41179 - 0.735427i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.41179 - 0.735427i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.34 + 0.437i)T \) |
| 3 | \( 1 + (1.40 + 1.01i)T \) |
| 11 | \( 1 + (-6.10 - 9.15i)T \) |
good | 5 | \( 1 + (-1.91 + 5.90i)T + (-20.2 - 14.6i)T^{2} \) |
| 7 | \( 1 + (-1.56 - 2.15i)T + (-15.1 + 46.6i)T^{2} \) |
| 13 | \( 1 + (7.54 - 2.45i)T + (136. - 99.3i)T^{2} \) |
| 17 | \( 1 + (7.16 + 2.32i)T + (233. + 169. i)T^{2} \) |
| 19 | \( 1 + (21.0 - 28.9i)T + (-111. - 343. i)T^{2} \) |
| 23 | \( 1 - 41.2T + 529T^{2} \) |
| 29 | \( 1 + (3.90 + 5.37i)T + (-259. + 799. i)T^{2} \) |
| 31 | \( 1 + (4.73 + 14.5i)T + (-777. + 564. i)T^{2} \) |
| 37 | \( 1 + (28.9 - 21.0i)T + (423. - 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-15.8 + 21.7i)T + (-519. - 1.59e3i)T^{2} \) |
| 43 | \( 1 + 8.05iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (10.8 + 7.89i)T + (682. + 2.10e3i)T^{2} \) |
| 53 | \( 1 + (27.8 + 85.5i)T + (-2.27e3 + 1.65e3i)T^{2} \) |
| 59 | \( 1 + (83.3 - 60.5i)T + (1.07e3 - 3.31e3i)T^{2} \) |
| 61 | \( 1 + (0.171 + 0.0557i)T + (3.01e3 + 2.18e3i)T^{2} \) |
| 67 | \( 1 - 54.4T + 4.48e3T^{2} \) |
| 71 | \( 1 + (16.5 - 51.0i)T + (-4.07e3 - 2.96e3i)T^{2} \) |
| 73 | \( 1 + (-69.1 - 95.1i)T + (-1.64e3 + 5.06e3i)T^{2} \) |
| 79 | \( 1 + (110. - 35.7i)T + (5.04e3 - 3.66e3i)T^{2} \) |
| 83 | \( 1 + (115. + 37.4i)T + (5.57e3 + 4.04e3i)T^{2} \) |
| 89 | \( 1 + 76.6T + 7.92e3T^{2} \) |
| 97 | \( 1 + (49.5 + 152. i)T + (-7.61e3 + 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.34192619982363601087623262669, −12.93200807230406732630173021263, −12.50590223506450722585440906616, −11.44344001720319539482109660028, −9.955430353288963120476290010629, −8.663983328567759410081782137976, −6.94099242586841815601669519766, −5.50674037657792706139334243790, −4.46483773401976935701876582333, −1.76842235617609702954947919863,
2.99474727827265650930916809709, 4.72512461712018859607257151464, 6.27822357100281492868453360662, 7.12198484373774286585076937540, 9.066663590037125729852071684305, 10.84596764959882182564432104031, 11.05091324555804857688005248315, 12.69161087884839816857176681484, 13.87057506368639524690754735224, 14.75382018283901181775680382200