Properties

Label 2-66-1.1-c5-0-6
Degree $2$
Conductor $66$
Sign $-1$
Analytic cond. $10.5853$
Root an. cond. $3.25351$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 9·3-s + 16·4-s − 14·5-s + 36·6-s + 130·7-s − 64·8-s + 81·9-s + 56·10-s − 121·11-s − 144·12-s − 122·13-s − 520·14-s + 126·15-s + 256·16-s − 1.10e3·17-s − 324·18-s − 1.31e3·19-s − 224·20-s − 1.17e3·21-s + 484·22-s − 3.00e3·23-s + 576·24-s − 2.92e3·25-s + 488·26-s − 729·27-s + 2.08e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.250·5-s + 0.408·6-s + 1.00·7-s − 0.353·8-s + 1/3·9-s + 0.177·10-s − 0.301·11-s − 0.288·12-s − 0.200·13-s − 0.709·14-s + 0.144·15-s + 1/4·16-s − 0.929·17-s − 0.235·18-s − 0.835·19-s − 0.125·20-s − 0.578·21-s + 0.213·22-s − 1.18·23-s + 0.204·24-s − 0.937·25-s + 0.141·26-s − 0.192·27-s + 0.501·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66\)    =    \(2 \cdot 3 \cdot 11\)
Sign: $-1$
Analytic conductor: \(10.5853\)
Root analytic conductor: \(3.25351\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 66,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
3 \( 1 + p^{2} T \)
11 \( 1 + p^{2} T \)
good5 \( 1 + 14 T + p^{5} T^{2} \)
7 \( 1 - 130 T + p^{5} T^{2} \)
13 \( 1 + 122 T + p^{5} T^{2} \)
17 \( 1 + 1108 T + p^{5} T^{2} \)
19 \( 1 + 1314 T + p^{5} T^{2} \)
23 \( 1 + 3000 T + p^{5} T^{2} \)
29 \( 1 + 4432 T + p^{5} T^{2} \)
31 \( 1 - 880 T + p^{5} T^{2} \)
37 \( 1 - 11818 T + p^{5} T^{2} \)
41 \( 1 + 5648 T + p^{5} T^{2} \)
43 \( 1 - 778 T + p^{5} T^{2} \)
47 \( 1 + 10672 T + p^{5} T^{2} \)
53 \( 1 - 9086 T + p^{5} T^{2} \)
59 \( 1 + 12012 T + p^{5} T^{2} \)
61 \( 1 - 39826 T + p^{5} T^{2} \)
67 \( 1 + 56316 T + p^{5} T^{2} \)
71 \( 1 + 51920 T + p^{5} T^{2} \)
73 \( 1 + 10266 T + p^{5} T^{2} \)
79 \( 1 + 79646 T + p^{5} T^{2} \)
83 \( 1 - 30224 T + p^{5} T^{2} \)
89 \( 1 + 75310 T + p^{5} T^{2} \)
97 \( 1 + 43778 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15141053579592860071343945647, −11.77955559266127482812358503346, −11.09570059637665710218651495279, −9.958498739622676393797525978312, −8.486317612316221000289019445398, −7.47718841639675707002042532776, −5.99089763546447393190320708379, −4.40359096155344720222921178447, −1.94049119232238304225214754783, 0, 1.94049119232238304225214754783, 4.40359096155344720222921178447, 5.99089763546447393190320708379, 7.47718841639675707002042532776, 8.486317612316221000289019445398, 9.958498739622676393797525978312, 11.09570059637665710218651495279, 11.77955559266127482812358503346, 13.15141053579592860071343945647

Graph of the $Z$-function along the critical line