Properties

Label 2-66-1.1-c5-0-3
Degree $2$
Conductor $66$
Sign $1$
Analytic cond. $10.5853$
Root an. cond. $3.25351$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 9·3-s + 16·4-s + 50·5-s − 36·6-s + 2·7-s + 64·8-s + 81·9-s + 200·10-s − 121·11-s − 144·12-s + 966·13-s + 8·14-s − 450·15-s + 256·16-s + 1.96e3·17-s + 324·18-s + 1.24e3·19-s + 800·20-s − 18·21-s − 484·22-s + 136·23-s − 576·24-s − 625·25-s + 3.86e3·26-s − 729·27-s + 32·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s + 0.0154·7-s + 0.353·8-s + 1/3·9-s + 0.632·10-s − 0.301·11-s − 0.288·12-s + 1.58·13-s + 0.0109·14-s − 0.516·15-s + 1/4·16-s + 1.64·17-s + 0.235·18-s + 0.791·19-s + 0.447·20-s − 0.00890·21-s − 0.213·22-s + 0.0536·23-s − 0.204·24-s − 1/5·25-s + 1.12·26-s − 0.192·27-s + 0.00771·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66\)    =    \(2 \cdot 3 \cdot 11\)
Sign: $1$
Analytic conductor: \(10.5853\)
Root analytic conductor: \(3.25351\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 66,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.698983138\)
\(L(\frac12)\) \(\approx\) \(2.698983138\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
3 \( 1 + p^{2} T \)
11 \( 1 + p^{2} T \)
good5 \( 1 - 2 p^{2} T + p^{5} T^{2} \)
7 \( 1 - 2 T + p^{5} T^{2} \)
13 \( 1 - 966 T + p^{5} T^{2} \)
17 \( 1 - 1964 T + p^{5} T^{2} \)
19 \( 1 - 1246 T + p^{5} T^{2} \)
23 \( 1 - 136 T + p^{5} T^{2} \)
29 \( 1 + 7824 T + p^{5} T^{2} \)
31 \( 1 + 4752 T + p^{5} T^{2} \)
37 \( 1 - 4650 T + p^{5} T^{2} \)
41 \( 1 - 7536 T + p^{5} T^{2} \)
43 \( 1 + 14582 T + p^{5} T^{2} \)
47 \( 1 - 3984 T + p^{5} T^{2} \)
53 \( 1 - 12350 T + p^{5} T^{2} \)
59 \( 1 + 22380 T + p^{5} T^{2} \)
61 \( 1 + 15662 T + p^{5} T^{2} \)
67 \( 1 + 29564 T + p^{5} T^{2} \)
71 \( 1 - 55536 T + p^{5} T^{2} \)
73 \( 1 + 63258 T + p^{5} T^{2} \)
79 \( 1 + 514 p T + p^{5} T^{2} \)
83 \( 1 - 81808 T + p^{5} T^{2} \)
89 \( 1 - 116434 T + p^{5} T^{2} \)
97 \( 1 - 20734 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67407134878425170614608412223, −12.94347276495758191486878572733, −11.67652992030430118616587486161, −10.65526608401205724352077570706, −9.482836328352781141255523839964, −7.66023411908080798959607871776, −6.07115407740526164410514851844, −5.40500645041895651059846523723, −3.53096331264009716799644160689, −1.46958067397625801295955193971, 1.46958067397625801295955193971, 3.53096331264009716799644160689, 5.40500645041895651059846523723, 6.07115407740526164410514851844, 7.66023411908080798959607871776, 9.482836328352781141255523839964, 10.65526608401205724352077570706, 11.67652992030430118616587486161, 12.94347276495758191486878572733, 13.67407134878425170614608412223

Graph of the $Z$-function along the critical line