Properties

Label 2-66-1.1-c11-0-15
Degree $2$
Conductor $66$
Sign $-1$
Analytic cond. $50.7106$
Root an. cond. $7.12114$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 32·2-s + 243·3-s + 1.02e3·4-s − 5.27e3·5-s + 7.77e3·6-s − 3.02e4·7-s + 3.27e4·8-s + 5.90e4·9-s − 1.68e5·10-s + 1.61e5·11-s + 2.48e5·12-s + 4.36e5·13-s − 9.68e5·14-s − 1.28e6·15-s + 1.04e6·16-s − 5.19e5·17-s + 1.88e6·18-s − 8.72e6·19-s − 5.39e6·20-s − 7.35e6·21-s + 5.15e6·22-s − 3.77e7·23-s + 7.96e6·24-s − 2.10e7·25-s + 1.39e7·26-s + 1.43e7·27-s − 3.09e7·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.754·5-s + 0.408·6-s − 0.680·7-s + 0.353·8-s + 1/3·9-s − 0.533·10-s + 0.301·11-s + 0.288·12-s + 0.325·13-s − 0.481·14-s − 0.435·15-s + 1/4·16-s − 0.0887·17-s + 0.235·18-s − 0.808·19-s − 0.377·20-s − 0.392·21-s + 0.213·22-s − 1.22·23-s + 0.204·24-s − 0.431·25-s + 0.230·26-s + 0.192·27-s − 0.340·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66\)    =    \(2 \cdot 3 \cdot 11\)
Sign: $-1$
Analytic conductor: \(50.7106\)
Root analytic conductor: \(7.12114\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 66,\ (\ :11/2),\ -1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{5} T \)
3 \( 1 - p^{5} T \)
11 \( 1 - p^{5} T \)
good5 \( 1 + 1054 p T + p^{11} T^{2} \)
7 \( 1 + 4322 p T + p^{11} T^{2} \)
13 \( 1 - 436342 T + p^{11} T^{2} \)
17 \( 1 + 30572 p T + p^{11} T^{2} \)
19 \( 1 + 8726850 T + p^{11} T^{2} \)
23 \( 1 + 37784208 T + p^{11} T^{2} \)
29 \( 1 + 204724120 T + p^{11} T^{2} \)
31 \( 1 - 8717272 T + p^{11} T^{2} \)
37 \( 1 + 343656494 T + p^{11} T^{2} \)
41 \( 1 - 364905112 T + p^{11} T^{2} \)
43 \( 1 + 538304198 T + p^{11} T^{2} \)
47 \( 1 - 636811256 T + p^{11} T^{2} \)
53 \( 1 - 1869748502 T + p^{11} T^{2} \)
59 \( 1 + 7808446140 T + p^{11} T^{2} \)
61 \( 1 - 1273413682 T + p^{11} T^{2} \)
67 \( 1 - 3037549956 T + p^{11} T^{2} \)
71 \( 1 - 21503658952 T + p^{11} T^{2} \)
73 \( 1 + 9839804298 T + p^{11} T^{2} \)
79 \( 1 - 10582738690 T + p^{11} T^{2} \)
83 \( 1 + 67463272528 T + p^{11} T^{2} \)
89 \( 1 + 69563499550 T + p^{11} T^{2} \)
97 \( 1 + 15302382914 T + p^{11} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.18879165658329244437646051722, −11.05178979712060718968473886924, −9.693597746003168159899996226178, −8.345355454432151940303564349021, −7.18921222660014364896658309927, −5.94638807016687916362989687040, −4.19103324116654269881782210519, −3.43243641503175411484203852841, −1.94054547158428151663959467741, 0, 1.94054547158428151663959467741, 3.43243641503175411484203852841, 4.19103324116654269881782210519, 5.94638807016687916362989687040, 7.18921222660014364896658309927, 8.345355454432151940303564349021, 9.693597746003168159899996226178, 11.05178979712060718968473886924, 12.18879165658329244437646051722

Graph of the $Z$-function along the critical line